Физические свойства воздуха: плотность, вязкость, удельная теплоемкость
Содержание:
- Суточный ход температур
- Тяга
- Особенности и нюансы технологического процесса монтажа приточной вентиляции с подогревом воздуха
- Плотность воды в зависимости от температуры
- Размер и габариты
- Виды термометров по используемым материалам
- Происхождение и роль атмосферы
- Требования к документу
- Повесьте плотные шторы: открывайте их утром и закрывайте с наступлением сумерек
- Устройство приточной вентиляции с подогревом воздуха
- Основные виды ветров:
- Степень — нагрев — воздух
- Средние значения и амплитуда температур
Суточный ход температур
Суточный ход температуры позволяет отслеживать какое время в сутках является наиболее холодным, а какое наиболее теплым. Есть несколько факторов, которые первостепенно влияют на этот показатель:
- Угол падения солнечных лучей на землю.
- Направление ветра.
- Облачность.
Все эти факторы важны, но ключевым является угол падения солнечных лучей на землю. Чем более отвесно падают лучи, те поверхность нагревается сильнее. Соответственно, чем угол наклона меньше, тем поверхность нагревается слабее. Этим объясняется и тот факт, что, например, утром земля нагревается не так интенсивно, как днём.
Здесь нужно сделать очень важное замечание. Все мы знаем, что солнце находится в зените в 12:00 дня, поэтому если рассматривать исключительно прогрев земной поверхности, то максимальная температура должна приходиться также на 12:00
Однако если исследовать суточный ход температуры воздуха, то становится понятным, что наиболее жаркое время — период с 14:00 до 15:00. Связано это с тем, что солнце пригревает не воздух, а поверхность земли, которая в свою очередь уже пробивает воздух. На это нужно время. Поэтому в любых географических изучение нужно понимать, что между прогреванием/охлаждением земной поверхности и прогреванием/охлаждением температуры воздуха должно пройти некоторое время. Также одним из примеров этого — наиболее прохладное время суток приходится на период с 5:00 до 6:00 утра. Летом это время рассвета, но несмотря на то, что солнце уже светит и прогревает земную поверхность, температура воздуха всё ещё прохладная.
Амплитуда температуры
Одним из важнейших метеорологических показателей при исследовании температуры воздуха является амплитуда. В простейшем смысле амплитуда представляет собой разницу между самой высокой и самой низкой суточной температурой воздуха. Максимальная температура замеряется в 14:00 дня, а минимальная в 6:00 утра. Связанно это с тем, о чем мы говорили выше.
В приведённом примере очевидно, что амплитуда суточной температуры воздуха составляет на третьем рисунке 18 градусов.
Среднесуточная температура
Выше уже отмечалось, что на метеорологических станциях температура воздуха измеряется 8 раз в сутки. Поэтому сравнение различных дней по температуре воздуха между собой достаточно трудоемкий процесс. Чтобы упростить, в географии используются такое понять как средняя температура воздуха. Простейшие выражение заключается в определении среднесуточной температурой воздуха. В основе определения этого показателя лежит простое арифметическое среднее. Расчеты производятся на основании входных параметров, которые могут быть двух типов:
- С разными знаками. Это означает, что максимальная температура выше нуля, а минимальная температура ниже нуля. В этом случае отдельно суммируются плюсовые показатели температуры и отдельно суммируются минусовые показателе температуры по абсолютному значению. Затем от наибольшего числа отнимается меньше, и происходит деление на количество замеров.
- С одним знаком. В данном случае и максимальная и минимальная температура находится обоюдно либо выше нуля либо ниже нуля. В этом случае все показатели суточной температуры суммируются и делится на количество замеров.
По опыту известно, что на начальном этапе обучения географии, наибольшие проблемы вызывает определение среднесуточной температурой воздуха по показателям с разными знаками. Давайте рассмотрим пример. За сутки было произведено 8 изомеров и известны следующие их показатели: -2, +3, +6, +9, +7, +2, -3, -4. Нужно произвести следующие действия:
- Находим сумму всех температуру, которые выше нуля. В данном случае это 27 градусов (3 + 6 + 9 + 7 + 2).
- Находим сумму всех температур с отрицательным знаком, но по абсолютному значению. В данном случае это 9 градусов (2 + 3 + 4).
- От большего значения вычитаемое меньшее и делим на количество замеров. Следовательно 27 — 9 = 18 / 8 = 2,25. Значит среднесуточная температура воздуха по приведенным данным составляет +2,25 градусов.
Если большую сумму дают показатели выше нуля, то конечная среднесуточная температура воздуха будет положительной. Если большую сумму дают показатели ниже нуля, только конечный результат будет отрицательным.
Аналогичным образом происходит измерение среднемесячной и среднегодовой температуры воздуха.
Тяга
Тяга – это разность между давлением газов внутри технического устройства и давлением окружающей среды при их свободном сообщении. Тяга возникает вследствие того, что газы внутри печи, в газоходах и в дымовой трубе легче, чем более холодный воздух снаружи, и поэтому они вытесняются более холодным и тяжелым воздухом.
Теоретически рассчитанная тяга (Па) выражается формулой
P = 9,81H(ρг – ρа), (1) где H – высота технического устройства, м; ρг – средняя плотность газа в газоходе, кг/м3; ρа – средняя плотность атмосферного воздуха, кг/м3.
По абсолютной величине тяга отрицательна. Для вычисления средней плотности воздуха и дымовых газов используются законы идеальных газов.
Воздух для горения из атмосферы подается в горелки, где топливо сжигается в смеси с воздухом в печи, и горячие дымовые газы отводятся через газоходы и дымовую трубу в атмосферу (рис. 1–4).
Рис. 1. Технологическая печь с естественной тягойРис. 2. Технологическая печь с дымососомРис. 3. Технологическая печь с воздунагнетателемРис. 4. Технологическая печьс воздунагнетателем и дымососом
При прохождении через секцию конвекции и газоходы газы преодолевают их аэродинамическое сопротивление.
Высота дымовой трубы задается с таким расчетом, чтобы обеспечить тягу, достаточную для преодоления этого сопротивления и гарантировать отрицательное давление (или разрежение) внутри печи.
Как видно из формулы (1), тяга не является постоянной величиной и зависит от состояния окружающей атмосферы, температуры газов внутри печи, в газоходах и дымовой трубе. При прочих равных условиях тяга максимальна в холодное время года и минимальна в теплое.
Влажность воздуха также существенно влияет на тягу: увеличение влажности снижает тягу.
Следующий пример иллюстрирует влияние состояния атмосферы на работу печей.
Тяга дымовой трубы Н = 100 м для выброса в атмосферу дымовых газов печи температурой tг = 200°С составит: – для теплого времени года (t = 20°C): ρа = 1,198 кг/м3; ρг = 0,725 кг/м3 (плотность дымового газа при 200°C);
P = 9,8·100(0,725 – 1,198) = – 464,0 Па; – для холодного времени года (t = – 20°C): ρа = 1,387 кг/м3;
P = 9,8·100(0,725 – 1,387) = – 649,4 Па.
Разница в тяге дымовой трубы летом и зимой за счет разницы плотности атмосферного воздуха ΔP = 185,4 Па.
Принимая во внимание, что рекомендуемый рабочий диапазон величины разрежения в топочном пространстве печи составляет в конкретном случае –10… –40 Па, можно сделать вывод, что при отсутствии регулирования оптимальный режим эксплуатации печи может легко нарушиться в связи с сезонным изменением атмосферы. Всем этим обусловливается необходимость регулирования тяги в ходе эксплуатации
Всем этим обусловливается необходимость регулирования тяги в ходе эксплуатации.
Существуют четыре типа систем обеспечения тяги в печах:
- естественная (рис. 1), регулируемая с помощью шибера;
- с помощью дымососа (рис. 2), регулируемая его производительностью и, возможно, с помощью шибера;
- с помощью нагнетателя воздуха и, возможно, с помощью шибера (рис. 3);
- совместно с помощью дымососа и воздухонагнетателя (рис. 4), регулируемая производительностью обоих.
Особенности и нюансы технологического процесса монтажа приточной вентиляции с подогревом воздуха
Монтаж приточной вентиляции не сложен для профессионала. В принципе, технологический процесс не имеет большого количества сложностей. В первую очередь, чтобы предотвратить конденсацию, нужно участок до входа в устройство изолировать при помощи рулонного утеплителя.
Воздуховоды необходимо закрепить на стене или на потолке. Чтобы не возникало лишней вибрации, рекомендуется закрепить вибрационные круглые вставки между установкой и сетью. Приточная вентиляция с подогревом и охлаждением воздуха должна располагаться так, чтобы вентиляционные решетки были направлены на места максимального скопления людей.
Гораздо проще происходит монтаж оборудования в простой квартире или частном доме. Для этого используются компактные установки с небольшими размерами. Если в помещении имеются пластиковые окна, значит, естественная вентиляция невозможна, а потому придется монтировать приточную принудительную модель.
Приточный клапан с подогревом может крепиться как в стену, так и в потолок, все зависит от дизайна помещения и личных предпочтений хозяина.
Плотность воды в зависимости от температуры
Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?
Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.
Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.
В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.
Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице.
t, °С | ρ, кг/м3 | ρ, г/мл | t, °С | ρ, кг/м3 | ρ, г/мл | t, °С | ρ, кг/м3 | ρ, г/мл |
---|---|---|---|---|---|---|---|---|
999,8 | 0,9998 | 62 | 982,1 | 0,9821 | 200 | 864,7 | 0,8647 | |
0,1 | 999,8 | 0,9998 | 64 | 981,1 | 0,9811 | 210 | 852,8 | 0,8528 |
2 | 999,9 | 0,9999 | 66 | 980 | 0,98 | 220 | 840,3 | 0,8403 |
4 | 1000 | 1 | 68 | 978,9 | 0,9789 | 230 | 827,3 | 0,8273 |
6 | 999,9 | 0,9999 | 70 | 977,8 | 0,9778 | 240 | 813,6 | 0,8136 |
8 | 999,9 | 0,9999 | 72 | 976,6 | 0,9766 | 250 | 799,2 | 0,7992 |
10 | 999,7 | 0,9997 | 74 | 975,4 | 0,9754 | 260 | 783,9 | 0,7839 |
12 | 999,5 | 0,9995 | 76 | 974,2 | 0,9742 | 270 | 767,8 | 0,7678 |
14 | 999,2 | 0,9992 | 78 | 973 | 0,973 | 280 | 750,5 | 0,7505 |
16 | 999 | 0,999 | 80 | 971,8 | 0,9718 | 290 | 732,1 | 0,7321 |
18 | 998,6 | 0,9986 | 82 | 970,5 | 0,9705 | 300 | 712,2 | 0,7122 |
20 | 998,2 | 0,9982 | 84 | 969,3 | 0,9693 | 305 | 701,7 | 0,7017 |
22 | 997,8 | 0,9978 | 86 | 967,8 | 0,9678 | 310 | 690,6 | 0,6906 |
24 | 997,3 | 0,9973 | 88 | 966,6 | 0,9666 | 315 | 679,1 | 0,6791 |
26 | 996,8 | 0,9968 | 90 | 965,3 | 0,9653 | 320 | 666,9 | 0,6669 |
28 | 996,2 | 0,9962 | 92 | 963,9 | 0,9639 | 325 | 654,1 | 0,6541 |
30 | 995,7 | 0,9957 | 94 | 962,6 | 0,9626 | 330 | 640,5 | 0,6405 |
32 | 995 | 0,995 | 96 | 961,2 | 0,9612 | 335 | 625,9 | 0,6259 |
34 | 994,4 | 0,9944 | 98 | 959,8 | 0,9598 | 340 | 610,1 | 0,6101 |
36 | 993,7 | 0,9937 | 100 | 958,4 | 0,9584 | 345 | 593,2 | 0,5932 |
38 | 993 | 0,993 | 105 | 954,5 | 0,9545 | 350 | 574,5 | 0,5745 |
40 | 992,2 | 0,9922 | 110 | 950,7 | 0,9507 | 355 | 553,3 | 0,5533 |
42 | 991,4 | 0,9914 | 115 | 946,8 | 0,9468 | 360 | 528,3 | 0,5283 |
44 | 990,6 | 0,9906 | 120 | 942,9 | 0,9429 | 362 | 516,6 | 0,5166 |
46 | 989,8 | 0,9898 | 125 | 938,8 | 0,9388 | 364 | 503,5 | 0,5035 |
48 | 988,9 | 0,9889 | 130 | 934,6 | 0,9346 | 366 | 488,5 | 0,4885 |
50 | 988 | 0,988 | 140 | 925,8 | 0,9258 | 368 | 470,6 | 0,4706 |
52 | 987,1 | 0,9871 | 150 | 916,8 | 0,9168 | 370 | 448,4 | 0,4484 |
54 | 986,2 | 0,9862 | 160 | 907,3 | 0,9073 | 371 | 435,2 | 0,4352 |
56 | 985,2 | 0,9852 | 170 | 897,3 | 0,8973 | 372 | 418,1 | 0,4181 |
58 | 984,2 | 0,9842 | 180 | 886,9 | 0,8869 | 373 | 396,2 | 0,3962 |
60 | 983,2 | 0,9832 | 190 | 876 | 0,876 | 374,12 | 317,8 | 0,3178 |
Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.
Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.
Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.
Размер и габариты
Вполне логично предположить, что чем больше мощность обогревателя, тем больше будут его габаритные размеры.
Однако обратите внимание, что во многих моделях при этом изменяется только ширина. А вот высота и толщина остается неизменной
Это очень важный момент при размещении обогрева на стене и встраивании его в другие элементы дизайна.
При этом у ведущих производителей даже при одинаковой мощности всегда можно подобрать как:
низкие и очень широкие, для больших окон или витражей
так и наоборот — высокие и узкие в маленькие комнаты
Вот например две модели одинаковой мощности 2кВт, но зато какая разница в ширине корпуса. Как вы думаете какой будет греть лучше?
Виды термометров по используемым материалам
-
Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
- Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
- Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
- Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
- Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
- Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
- Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.
предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.
Источники
- https://nauka.club/estestvoznanie/temperatura-vozdukha.html
- https://RkzSp.ru/otoplenie-montazh/kak-izmerit-temperaturu-vozduha.html
- https://geografiyazemli.ru/atmosfera/temperatura-vozducha.html
Происхождение и роль атмосферы
Современная земная атмосфера имеет, по-видимому, вторичное происхождение и образовалась из газов, выделенных твёрдой оболочкой Земли (литосферой) после сформирования планеты. В течение геологической истории Земли А. претерпела значительную эволюцию под влиянием ряда факторов: диссипации (улетучивания) атмосферных газов в космическое пространство; выделения газов из литосферы в результате вулканической деятельности; диссоциации (расщепления) молекул под влиянием солнечного ультрафиолетового излучения; химических реакций между компонентами А. и породами, слагающими земную кору; аккреции (захвата) межпланетной среды (например, метеорного вещества). Развитие А. было тесно связано с геологическими и геохимическими процессами, а также с деятельностью живых организмов. Атмосферные газы, в свою очередь, оказывали большое влияние на эволюцию литосферы. Например, громадное количество углекислоты, поступившей в А. из литосферы, было затем аккумулировано в карбонатных породах. Атмосферный кислород и поступающая из А. вода явились важнейшими факторами, которые воздействовали на горные породы. На протяжении всей истории Земли А. играла большую роль в процессе выветривания. В этом процессе участвовали атмосферные осадки, которые образовывали реки, изменявшие земную поверхность. Не меньшее значение имела деятельность ветра, переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов, большая часть которых сгорает при вхождении в плотные слои атмосферы.
Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями, атмосферная углекислота — в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека. Особенно сильно зависит от климатических условий сельское хозяйство. В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.
Требования к документу
У комиссии должен быть бланк акта. Если он составляется без него, обязательно выдерживаются следующие пункты:
- В документе указывается полный и точный адрес квартиры. Необходимо записать и сведения о владельце.
- Потом идет перечисление характеристик жилья. Указывается количество комнат, этаж помещения, насколько жилье утеплено.
- Даются и технические характеристики отопительной системы. Что должно быть в них? Схема разводки, температура наружная теплообменников, фактическая температура теплоносителей (и на подаче, и на обратке).
- Указывается температура и влажность воздуха, температура внутренне поверхности стены.
- В итоге акта должна быть указана (или указаны) причины того, что температура в квартире понижена или повышена.
Составленный и подписанный акт передается в Управляющую Компанию или в теплоснабжающую организацию, они должны предпринять меры к исправлению ситуации.
При отсутствии реакции потребитель вправе обратиться в прокуратуру, в Роспотребнадзор. При крайних обстоятельствах – в суд
Но важно, чтобы иск в суд был составлен после того, как не дали результата обращения в другие организации. Важно иметь на руках доказательства попыток досудебного урегулирования проблемы
Повесьте плотные шторы: открывайте их утром и закрывайте с наступлением сумерек
С наступлением зимы тонкие занавески на окнах нужно заменить на плотные шторы и закрывать их сразу, как только на улице начинает темнеть. Толстые шторы сыграют роль термоизолятора и защитят дом от холодных потоков воздуха. Это особенно актуально, если окна продувают (к сожалению, этим грешат не только старые деревянные окна, но и некоторые современные пластиковые).
Днем шторы нужно открыть, при этом чем шире, тем лучше. Через окно в комнату будет попадать солнечный свет и тепло. Понятно, что температура увеличится максимум на 1–2 градуса, но все же находиться в помещении в обеденное время будет намного комфортнее.
Сохранить тепло и создать уют в квартире помогут стильные плотные шторы темно-серого или шоколадного цвета от магазина товаров для дома Mebelion.
Портьера Primavelle в Mebelion От 2 800 руб. +7 (800) 707-47-67
Портьера Mona Liza в Mebelion От 3 250 руб. +7 (800) 707-47-67
Устройство приточной вентиляции с подогревом воздуха
Различают два вида агрегатов для приточной вентиляции:
- Моноблочные – складываются они из одного блока, который устанавливают на входе воздуховода. В таком блоке расположены все без исключения нужные приспособление, обеспечивающие качественную и верную службу вентиляционной конструкции. Такого рода устройство нередкого в целом вводится в стене либо в оконных рамах. Этот метод считается наиболее простым и самым не дорогим. Но в практике он довольно неэффективен, так как размещение его заборных вентиляторов не дает возможность охватывать многие зоны здания.
- Монтажные – данные приточные вентиляционные системы обладают достаточной мощью для того, чтобы охватить высотные здания, производственные помещения больших площадей, многоквартирные дома.
Схемы приточной вентиляции
Самый простой тип установки:
- Воздушный фильтр,
- Нагнетающий вентилятор,
- Нагревательный элемент.
Как нагреть приточный воздух при помощи рекуператора?
Рекуператоры делятся на 2 вида:
-
Роторные
– работают при помощи электричества. Имеют корпус цилиндрической формы, в который вмонтирован роторный элемент. Он постоянно вращается между клапанами «входящего» и «отработаного» воздуха. Достаточно габаритная деталь. КПД – до 87%. -
Пластинчатые
. Такие рекуператоры состоят из объединённых пластин. Приточный и «отработаный» воздух движутся навстречу друг другу, по разным клапанам. Это позволяет предотвратить рециркуляцию. Такие рекуператоры, как правило, небольших размеров.
Основные виды ветров:
А на море белый песок
Дует тёплый ветер в лицо
Пассаты это очень мощные ветра, они устойчивы и оказывают влияние на климат.
Примеры влияние пассатов на климат:
-
В северном полушарии пассаты на север Африки несут сухие и нагретые воздушные массы с территории Аравийского полуострова. Следовательно на севере Африки тоже будет сухой и горячий климат (пустыня Сахара).
-
В южном полушарии, на восточное побережье Африки пассат приходит с Индийского океана. Воздух насыщен водяными парами, поэтому формируется жаркий и влажный климат.
Зимой муссоны дуют с материка на океан (зимой воздух над сушей холоднее, над океаном теплее). Летом с океана на материк
По климатической карте мы можем проследить действие муссонов.
В северном полушарии летний муссон несет морские воздушные массы с экватора на полуостров Индостан, встречая на своем пути Гималаи, влажный воздух оставляет всю влагу на восточных склонах гор. Таким образом над полуотсровом Индостан в летнее время очень большое количество осадков.
Степень — нагрев — воздух
Степень нагрева воздуха зависит от величины тепловыделений в помещении и регулируется автоматически.
Степень нагрева воздуха в сушильных камерах определяется физико-химическими свойствами лакокрасочных покрытий. Например, нитроцеллюлозные и перхлорвиниловые материалы сушатся при температуре 60 — 70 С; масляные, алкидные, фенолформальдегидные — при температуре НО — 130 С и выше; кремний-органические, асфальтовые лаки и эмали — до 180 С.
Степень нагрева воздуха зависит от величины тепловыделений в помещении и регулируется автоматически.
При снижении степени нагрева воздуха определяют теплопроизводительность калорифера.
Согласно ГОСТ 7201 — 70 модели различаются по величине температурного критерия, характеризующего степень нагрева воздуха, обеспечиваемую одним калорифером, и аэродинамического сопротивления.
Из уравнения видно, что для повышения температуры сгорания топлива и соответственно температуры факела надо повышать степень нагрева воздуха и топлива в регенераторах.
Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.
Для создания различной степени нагрева воздуха калориферы разделены по теплотехнической глубине ( тепломощности) на пять моделей: самая малая СМ, малая М, средняя С, большая Б — самая большая СБ. Модели различаются в зависимости от температурного критерия, который характеризует степень нагрева воздуха, создаваемую одним калорифером, и аэродинамического сопротивления.
На рис. 9.1 приведена схема форсуночного кондиционера, предназначенного для полной обработки воздуха, с I и II регулируемыми рециркуляциями. Установленные на подаче горячей воды в калориферы 4 специальные клапаны 75 регулируют степень нагрева воздуха в калориферах.
Регулирующий клапан изменяет расход воды, протекающей через калорифер, и соответственно степень нагрева воздуха.
Регулирующий клапан изменяет расход воды, протекающей через калорифер, я соответственно степень нагрева воздуха.
При общей длине цеха более 100 м рекомендуется устанавливать несколько вентиляционных камер из расчета одна камера на каждые 100 м длины короба. В тех случаях, когда температура воздуха в цехе превышает температуру в распределительном коробе более чем на 10 С, необходимо определять степень нагрева воздуха по длине воздуховода и при необходимости предусмотреть тепловую изоляцию боковых и верхних стенок короба.
Наиболее показателен первый период — летний — при наружной температуре выше 10 С. Если же приточный воздух подается механически ( обычно когда требуется фильтрация или охлаждение), то необходимо учитывать нагрев подаваемого воздуха в вентиляторе. Степень нагрева воздуха бывает различной — от 0 5 до 1 5 С. Можно принимать в среднем, что воздух нагревается в вентиляторе на 1 С.
Здесь отметим дополнительно, что чисто вентиляционная система может быть также осуществлена с частичной рециркуляцией воздуха, как и комбинированная система воздушного отопления и вентиляции. Различив между этими системами определяется лишь степенью нагрева воздуха, подаваемого в помещение.
В зависимости от назначения агрегаты имеют различные конструкции; и разделяются на вентиляционные, отопительно-вентиляционные и отопительные агрегаты. Учитывая, что стандартизация ( изготовления агрегатов зачастую не позволяет подобрать образцы, в точности соответствующие потребностям, приходится иногда одно помещение обслуживать несколькими агрегатами. Стандартизацию агрегатов производят обычно с учетом их производительности, степени нагрева воздуха, а иногда даже степени его увлажнения.
Средние значения и амплитуда температур
Одна из характеристик климата географической точки — среднесуточная температура. Ее можно определить как среднее арифметическое от замеров, сделанных 4 раза за сутки:
- в час ночи;
- в семь часов утра;
- в 13 часов;
- в 19 часов.
Среднегодовая температура является средним арифметическим от суммы температур всех месяцев года. Соответственно, среднемесячная определяется по сумме ежедневных данных за месяц, разделенной на число дней в месяце.
Температурные колебания в каком-либо регионе характеризуются амплитудой температуры, т. е. разницей между самым высоким и самым низким значением, зафиксированным за определенный промежуток времени. Обычно говорят о суточной, месячной или годичной амплитуде.
Амплитуда колебаний зависит от многих факторов. Прежде всего — это температурные изменения на подстилающей поверхности, чем шире их диапазон, тем больше амплитуда температуры воздуха. Она зависит и от облачности: в ясную погоду колебания сильнее, чем в пасмурную. Сезонные показатели длительного воздействия также отличаются — зимой они меньше, чем летом. С увеличением широты амплитуда температуры воздушных масс идет на убыль, поскольку убывает высота, на которую поднимается солнце к полудню.
Суточная амплитуда неодинакова на разных формах рельефа земной поверхности. На склонах и вершинах холмов и гор она меньше, чем на равнинных территориях. Это объясняется тем, что у выпуклых рельефных форм площадь соприкосновения воздуха и подстилающей поверхности меньше, чем у плоских. Кроме того, на них воздушные массы быстро сменяются на новые.
В оврагах и лощинах форма рельефа вогнутая. Здесь происходит более сильный нагрев воздуха от поверхности и застаивание его в дневные часы. Ночью большие массы холодного воздуха стекают по стенкам вниз. Поэтому в таких местах наблюдается повышенная амплитуда температуры. Но в очень узких ущельях, где приток солнечной радиации небольшой, этот показатель даже меньше, чем в широких долинах.
На материковой широте 20—30° суточная амплитуда, взятая в среднем за год, составляет около двенадцати градусов Цельсия. На широте 60° — примерно 6 °C, а на широте 70° — всего 3 °C.
Суточный ход на суше
Изменения температуры воздуха происходят вместе с изменением температуры подстилающей поверхности с задержкой примерно 15 минут. В течение суток самые низкие показания у термометра наблюдаются в 4−6 часов утра. Так происходит потому, что воздушные массы, нагретые за дневные часы, в ночные постепенно остывают.
Пик процесса понижения приходится как раз на время перед восходом Солнца. С раннего утра солнечные лучи начинают постепенно нагревать воздух, успевший остыть за ночь. Днем солнце достигает зенита, согревая не только воздушные массы, но и поверхность земли. Самое большое значение термометр показывает в 14−16 часов.
К этому времени атмосфера начинает получать тепло и от солнечной энергии, и от нагретой подстилающей поверхности, а температурный показатель достигает своего максимального значения. Потом начинается постепенное остывание и земли, и воздуха. Правильные наблюдения за суточным ходом температуры желательно проводить при ясной погоде.
Особенности теплообмена над водными поверхностями
Суточные амплитуды над поверхностью морей и океанов больше значений на самой поверхности. Их диапазон колебаний небольшой — в пределах десятых долей градуса. В нижних слоях атмосферы над океанами колебания достигают 1−1,5 °C, над внутренними морями — до 5 °C. Это происходит потому, что днем солнечная радиация поглощается водяным паром в самых нижних слоях воздуха, а ночью от них исходит длинноволновое тепловое излучение.
Отличия условий прогревания воды и суши обусловлены тем, что теплоемкость твердой поверхности в два раза меньше, чем у водной. Одинаковое количество тепла нагревает сушу в два раза быстрее воды. При охлаждении наблюдается обратный процесс. Кроме того, тепло над водными поверхностями расходуется на испарение воды и на прогревание водных масс на значительную глубину. При этом происходит перемешивание воды в вертикальном направлении.
Все это причины того, что в океанах накапливается намного больше тепла, чем на материках. Вода удерживает его долгое время и расходует равномерней суши. Можно утверждать, что температура воздуха над океанами повышается и понижается значительно медленней, чем на суше.