Солнечная радиация

Содержание:

Ультрафиолетовое излучение и его влияние на организм человека

Ультрафиолетовый спектр солнечного света состоит из длинных, средних и коротких волн, которые отличаются физическими свойствами и характером воздействия на живые организмы. Ультрафиолетовые лучи, которые относятся к длинноволновому спектру, преимущественно рассеиваются в атмосфере и не достигают поверхности земли. Чем меньше длина волны, тем глубже проникает ультрафиолет в кожные покровы.

Ультрафиолетовое излучение необходимо для поддержания жизни на Земле. На организм человека УФ-лучи оказывают следующее влияние:

  • насыщение витамином D, необходимым для формирования костной ткани;
  • профилактика остеохондроза и рахита у детей;
  • нормализация обменных процессов и синтеза полезных ферментов;
  • активация регенерации тканей;
  • улучшение кровообращения, расширение сосудов;
  • повышение иммунитета;
  • снятие нервного возбуждения за счет стимуляции выработки эндорфинов.

Несмотря на объемный перечень положительных качеств, солнечные ванны не всегда эффективны. Длительное пребывание на солнце в неблагоприятное время или в периоды аномально высокой солнечной активности сводит на нет полезные свойства УФ-лучей.

Ультрафиолетовое облучение в больших дозах имеет результат прямо противоположный ожидаемому:

  • эритему (покраснение кожи) и солнечные ожоги;
  • гиперемию, отечность;
  • повышение температуры тела;
  • головные боли;
  • нарушение функций иммунной и центральной нервной систем;
  • снижение аппетита, тошнота, рвота.

Эти признаки являются симптомами солнечного удара, при котором ухудшение состояния человека может происходить незаметно. Порядок действий при солнечном ударе:

  • переместить человека из зоны воздействия прямых солнечных лучей в прохладное место;
  • положить на спину и поднять ноги на возвышение, чтобы нормализовать кровообращение;
  • ополоснуть лицо и шею прохладной водой, желательно сделать компресс на лоб;
  • обеспечить возможность свободно дышать и избавить от тесной одежды;
  • в течение получаса дать напиться небольшим количеством чистой холодной воды.

В тяжелых случаях при потере сознания необходимо вызвать бригаду скорой помощи и по возможности привести пострадавшего в чувство. Медицинская помощь больному заключается в экстренном введении глюкозы или аскорбиновой кислоты внутривенно.

Радиационный баланс земной поверхности

Разность между поглощенной радиацией и эффективным излучением

R = (I sinh + i)(1 — A) — Ee

называют радиационным балансом земной поверхности. Другое ее название — остаточная радиация.

Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода солнца при высоте его 10-15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте солнца около 20-25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми.

Как мы измеряем радиацию?

Чтобы измерить солнечное излучение, которое мы получаем в точке, мы используем устройство, называемое пиранометром. Эта секция состоит из датчика, заключенного в прозрачную полусферу, которая пропускает все излучение очень малой длины волны. Этот датчик имеет чередующиеся черные и белые сегменты, которые по-разному поглощают количество излучения. Температурный контраст между этими сегментами откалиброван в соответствии с потоком излучения. (измеряется в ваттах на квадратный метр).

Оценка количества получаемого нами солнечного излучения также может быть получена путем измерения количества часов солнечного света, которые мы имеем. Для этого мы используем инструмент, называемый гелиографом. Он образован стеклянной сферой, ориентированной на географический юг, которая действует как большое увеличительное стекло, концентрируя все получаемое излучение в точке накаливания, которая прожигает специальную бумажную ленту с градуированными часами дня.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего – на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой – на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода

При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения – долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Суммарная радиация

Всю солнечную радиацию, приходящую к земной поверхности, прямую и рассеянную вместе, называют суммарной радиацией. Под интенсивностью суммарной радиации будем понимать приток ее энергии за одну минуту на один квадратный сантиметр горизонтальной поверхности, помещенной под открытым небом и незатененной от прямых солнечных лучей. Таким образом, интенсивность суммарной радиации равна

Is = I sinh+i

где I — интенсивность прямой радиации, i — интенсивность рассеянной радиации, h — высота солнца.

При безоблачном небе суммарная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая солнечный диск, увеличивает суммарную радиацию по сравнению с безоблачным небом; полная облачность, напротив, ее уменьшает. В среднем облачность уменьшает суммарную радиацию. Поэтому летом приход суммарной радиации в дополуденные часы в среднем больше, чем в послеполуденные. По той же причине в первую половину года он больше, чем во вторую.

В каких единицах измеряется радиоактивность?

Мерой радиоактивности радионуклида в соответствии с системой измерений СИ, является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Кроме того, в качестве меры радиоактивности широко используется не системная величина Кюри (Ки) и ее производные (милликюри, микрокюри и т.д.). Численно 1 Кюри = 3.7*1010 Бк, а 1 Бк = 0.027нКи (наноКюри). Содержание активности в единице массы вещества характеризуется удельной активностью, которая измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма)?

Мерой воздействия ионизирующего излучения является экспозиционная доза и измеряется она в Рентгенах (Р) и его производных (млР, мкР), а количественную сторону его характеризует мощность экспозиционной дозы,, которая измеряется в Рентгенах/сек (Р/сек.) и его производных (млР/час, мкР/час, мкР/сек).

Рентген – это доза рентгеновского или гамма-излучения в воздухе, при которой на 0.001293 г воздуха образуются ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака.

Эквивалентная доза – она равна произведению поглощенной дозы на средний коэффициент качества ионизирующего излучения (Например: коэффициент качества гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр ( мкбэр) и т.д., 1 бэр = 0,01 Дж/кг-1. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1Зв=1Дж/кг-1= 100 бэр.

1 мбэр = 1*10-3 бэр; 1 мкбэр = 1*10-6 бэр;

Поглощенная доза — количество энергии ионизирующего излучения которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад и его дольные значения, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1Гр=100рад=1Дж/кг-1

Доза – это сокращенное название эквивалентной дозы — мощности экспозиционной дозы умноженной на время экспозиции, единица измерения бэр.

Мощность дозы – сокращенное название мощности эквивалентной дозы.

Мощность эквивалентной дозы – это отношение приращения эквивалентной дозы за интервал времени к этому интервалу времени, единица измерения бэр/час, Зв/час.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как величина плотности потока частиц с единицы площади, в единицу времени a-частиц*мин/см2, b-частиц*мин/см2.

Какие существуют виды солнечного излучения и его характеристики

На границе атмосферы Земли интенсивность солнечного излучения – постоянная величина. Энергия Солнца дискретна и переносится порциями (квантами) энергии, но их корпускулярный вклад относительно мал, поэтому солнечные лучи рассматриваются как электромагнитные волны, которые распространяются равномерно и прямолинейно.

Основной волновой характеристикой является длина волны, с помощью которой выделяют виды излучения:

  • радиоволны;
  • инфракрасное (тепловое);
  • видимый (белый) свет;
  • ультрафиолетовое;
  • рентгеновское;
  • гамма-лучи.

Солнечная радиация представлена инфракрасным (ИК), видимым (ВС) и ультрафиолетовым (УФ) излучением в соотношении 52%, 43% и 5% соответственно. Количественной мерой излучения Солнца считается энергетическая освещенность (плотность энергетического потока) – лучистая энергия, поступающая в единицу времени на единицу поверхности.

Федеральный закон N 384-ФЗ от 30 декабря 2009 г. «Технический регламент о безопасности зданий и сооружений»

Статья 10. Требования безопасных для здоровья человека условий проживания и пребывания в зданиях и сооружениях2. Здание или сооружение должно быть спроектировано и построено таким образом, чтобы в процессе эксплуатации здания или сооружения
обеспечивались безопасные условия для проживания и пребывания человека в зданиях и сооружениях по следующим показателям:
1) качество воздуха в производственных, жилых и иных помещениях зданий и сооружений и в рабочих зонах производственных зданий и сооружений;
2) качество воды, используемой в качестве питьевой и для хозяйственно-бытовых нужд;3) инсоляция и солнцезащита помещений жилых, общественных и производственных зданий;
4) естественное и искусственное освещение помещений;

Статья 22. Требования к обеспечению инсоляции и солнцезащиты
1. Здания должны быть спроектированы таким образом, чтобы в жилых помещениях была обеспечена достаточная продолжительность инсоляции

или солнцезащита в целях создания безопасных условий проживания независимо от его срока. 2. Выполнение требований, предусмотренных частью 1 настоящей статьи, должно быть обеспечено мерами по ориентации жилых помещений
по сторонам света, а также мерами конструктивного и планировочного характера, в том числе по благоустройству прилегающей территории.

Статья 23. Требования к обеспечению освещения
1.
В расположенных в надземных этажах зданий и сооружений помещениях с постоянным пребыванием людей должно быть обеспечено
естественное или совмещенное, а также искусственное освещение
, а в подземных этажах — искусственное освещение,
достаточное для предотвращения угрозы причинения вреда здоровью людей.

Короткие лучи против рахита

Данил Сергеевич Симановский, педиатр :

– Солнечные лучи крайне важны для всех, и в первую очередь для детей. К сожалению, в Петербурге солнце нас не балует, особенно зимой и ранней весной. А между тем все суточные ритмы в нашем организме связаны с солнечным светом. Поэтому детям так тяжело вставать в школу и садик темным питерским утром. В темное время года маленький человечек ощутимо хуже переносит психические нагрузки. В это время у детей быстрее развиваются разнообразные функциональные расстройства нервной системы, а родители говорят о снижении иммунитета у их чад.

Для детей крайне важны ультрафиолетовые лучи более короткой длины – так называемого антирахитического спектра. Они стимулируют в коже процесс выработки витамина D, который необходим для нормального роста и развития ребенка, и в первую очередь его костей. Но не сам витамин D вызывает рост кости. Он лишь направляет кальций в нужное место в организме в нужное время.

Избыток витамина D у детей опаснее, чем его недостаток. Поэтому родителям, особенно детей до года, необходимо проконсультироваться с педиатром о режиме использования препаратов витамина D в связи с изменением сезона и степени освещенности. Обычная профилактическая доза, не требующая постоянного контроля, это 400–500 МЕ (международных единиц) в сутки. Назначение больших доз витамина D в сочетании с применением искусственного ультрафиолетового облучения и употреблением продуктов, обогащенных витамином D, требует подтверждения предполагаемого дефицита витамина D и контроля в процессе лечения. Для измерения уровня витамина D нужно сделать специальный анализ крови.

Избыток витамина D у детей опаснее, чем его недостаток

С появлением солнца весной в организме ребенка начинает вырабатываться собственный витамин D, и он суммируется с тем же витамином из продуктов питания и лекарств. В результате возникает избыток, что приводит в какой-то момент к снижению уровня кальция в крови. Это может проявляться мышечными подергиваниями, болями в мышцах, особенно ночными, иногда даже напоминающими судорожные, навязчивыми движениями. Это называется спазмофилией. Часто родители, да и врачи, при таких жалобах увеличивают дозу витамина D, что, разумеется, не помогает, а наоборот, только ухудшает ситуацию. Перед походом на профилактический осмотр к педиатру в весеннее время предварительно посчитайте весь витамин D, который получает ваш ребенок, учитывая детские смеси, кисломолочные продукты, детские каши, пюре, обогащенные витаминами.

Передозировка витамина D возможна только при приеме препаратов витамина D. Избыток в пищевом рационе не может вызвать гипервитаминоз, даже в сочетании с длительным пребыванием на солнце.

Влияние солнечной радиации на организм человека

Электромагнитный спектр солнечной радиации состоит из инфракрасной, видимой и ультрафиолетовой частей. Поскольку их кванты обладают различной энергией, то они оказывают разнообразное действие на человека.

  1. расширение кровеносных сосудов Результатом воздействия инфракрасного излучения является тепловой эффект, который сопровождается расширением кровеносных сосудов, усилением кровотока и кожного дыхания. Происходит расслабление сосудов и мышц, обладающее болеутоляющим и противовоспалительным эффектом. Мягкое тепло стимулирует образование и усвоение биологически активных веществ.
  2. Видимое излучение оказывает значительное фотохимическое действие, благодаря которому в окружающих тканях происходят весьма важные для организма процессы. Именно кванты видимого света активизируют работу зрительного анализатора, и человек видит мир во всём многообразии красок. Солнечный свет активизирует обменные процессы в организме, стимулирует работу коры головного мозга, улучшает эмоциональное состояние человека. Именно свет синхронизирует суточные и сезонные ритмы у человека, определяя время сна и бодрствования. Их нарушение приводит к бессоннице, ухудшению трудоспособности и депрессии.
  3. Ультрафиолетовая часть является жизненно важным фактором. Её недостаток приводит к ослаблению иммунитета, обострению хронических заболеваний и функциональным расстройствам нервной системы, тормозит выработку жизненно необходимых веществ.

освещение в помещении

Чрезвычайно велико и гигиеническое значение солнечной радиации. Поскольку видимый свет является решающим фактором в получении информации о внешнем мире, в помещении необходимо обеспечивать достаточный уровень освещённости. Его регламентирование производится согласно СНиП, которые для солнечной радиации составляются с учётом свето-климатических особенностей различных географических зон и учитываются при проектировании и строительстве различных объектов.

Даже поверхностный анализ электромагнитного спектра солнечного излучения доказывает, как велико влияние этого вида радиации на организм человека.

Как влияет на организм?

Излучаемая Солнцем радиация состоит из ультрафиолетовой, видимой и инфракрасной частей. В них содержится различная энергия и поэтому они могут по-разному влиять на человека:

  1. Тепловой эффект. Он появляется из-за влияния инфракрасного излучения и сопровождается расширением сосудов, которое приводит к улучшению кровотока. В результате теплового эффекта и людей расслабляются мышцы и лучше усваиваются биологически активные микроэлементы.
  2. Фотохимическое действие. Видимое солнечное излучение активизирует работу зрительного органа, благодаря чему человек может познавать окружающий мир. Поступающий свет от Солнца благоприятно влияет на работоспособность коры мозга и нормализует биоритмы человека. Нарушение биологических ритмов может привести к ухудшению самочувствия, бессоннице и развитию депрессии.
  3. Ультрафиолетовое воздействие. Недостаток ультрафиолета может негативно сказаться на здоровье людей. Ослабляется иммунная система, замедляется процесс вырабатывания жизненно важных веществ, обостряются хронические болезни и развиваются психические расстройства.

Интенсивность радиации и ее влияние на человека

Как уже говорилось выше, наличие в воздухе ионизирующих веществ можно проанализировать и точно определить с помощью специального устройства — дозиметра. В каких единицах измеряется радиация? Дозиметр позволяет определять радиационное поле не только в человеческом организме, но и на предметах и продуктах питания

Важно напомнить, что все радиационные элементы – это частицы с определенной способностью проникать через твердые поверхности. Проникаемость и единицы измерения радиации в таблице зависят напрямую от типа происхождения радиационного поля и от заряженности частиц, из которых она состоит

То есть, альфа-излучения, из которых может состоять ионизирующее вещество, могут практически не вредить человеку и никак не влиять на его самочувствие. Однако бета-лучи крайне быстро проникают внутрь тканей и органов и видоизменяют их биологическую структуру, из-за чего у человека могут диагностировать опухоли, раковые заболевания и отслоения слизистых оболочек.

Закажите бесплатно консультацию эколога

В чем измеряется радиация в единицах измерения и где используют дозиметры сегодня? Сегодня радиационное поле может проверить и проанализировать любой желающий человек, у которого есть дозиметр. Единицы, в чем измеряется радиация, — это рентгены или зиверты. Однако специальные научные проверки и профилактические измерения радиационного поля проводятся в следующих случаях:

Радиация и единицы измерения радиационного фона чаще всего проверяют на территории, которая прилегает к атомным электростанциям, а также на территории, которая может быть потенциально заражена в результате временных или серьезных аварий и неполадок в устройствах на АЭС. К примеру, после катастрофы на атомной электростанции в Чернобыле уровень радиационного поля проверялся не только в зоне отчуждения, но и на многих прилегающих к ней территориях и полях, по причине чего многие соседние села были также эвакуированы из-за заражения местности.
В чем измеряется излучение радиации? Радиационное поле стоит проверять перед началом строительства и планированием закладывания фундамента нового здания

По причине того, что многие подземные породы и источники могут выделять радиационные потоки, перед начало крупного строительства стоит убедиться в том, что выбранное место является максимально безопасным для проживания и не будет оказывать негативное влияние на организм.
Концентрацию ионизирующих веществ в воздухе в единицах измерения радиации зивертах или рентгенах стоит проверить, если вы планируете маршрут по неизведанным или давно заброшенным маршрутам в незнакомом месте, а также если вы планируете туристический поход в места, которые находятся неподалеку от атомных станций или химических лабораторий.
В чем измеряется солнечная радиация? Проверять уровень загрязненности воздуха на предмет радиационных элементов важно также при планировании приобретения частной собственности в незнакомом вам районе. Жилой фонд – это огромная база различной недвижимости, некоторый процент которой может быть представлен по крайне привлекательной цене по причине близости к опасным источникам или нахождения в зоне повышенного радиационного поля

Поэтому любая покупка крупного масштаба должна быть тщательно проверена.

В чем измеряется облучение радиацией? Следует отметить, что если человеческий организм можно частично очистить от радиационных элементов с помощью определенных продуктов питания и медикаментов, то открытую территорию или предметы очистить от ионизирующих веществ невозможно. Поэтому прежде чем покупать новый дом, планировать строительство или приобретать территорию в необследованной местности, убедитесь в том, что это место не является зараженным радиацией или находится на относительно безопасном расстоянии от источника радиации и ее распространителя. Бытовой дозиметр в этом случае будет отличным способом обезопасить свою жизнь и жизнь своих близких.

Показатели уровня инсоляции по регионам

Измерения уровня солнечной радиации, расчет мощности светового потока самостоятельно провести сложно. Для этого необходимо иметь специальное оборудование и наблюдать за Солнцем круглый год. Поэтому лучше всего обратиться к результатам исследований ученых. Ниже представлена карта солнечной инсоляции в городах России.

При расчетах непременно учитывается угол, под которым будут расположены солнечные модули. От положения панели по отношению к Солнцу зависит производительность всей установки. Всегда определяются возможности излучения при попадании его на поверхность солнечной батареи в двух положениях: горизонтальном и вертикальном. Для наглядности и будущего пользования при покупке модулей ниже представлены расчеты солнечной инсоляции в справочных таблицах.

Зная значение показателя инсоляции, несложно вычислить производительность солнечной батареи. Для этого следует умножить между собой несколько значений — это показатели месячной и максимальной величины радиоактивного солнечного излучения и номинальная мощность теплового модуля. Эта формула подходит, если планируется использовать низковольтное напряжение. В других случаях следует нужно знать значение коэффициента полезного действия инвертора (величина, получаемая в момент, когда напряжение преобразуется в постоянное). Это число следует разделить на значение максимальной инсоляции, а потом произвести умножение.

Производитель всегда указывает в описании товара информацию о максимальной мощности модуля. Но следует учесть, что на упаковке указано напряжение, получаемое на выходе, а оно всегда на 10-15 % выше того, что вырабатывают аккумуляторы. Поэтому при проведении расчета коэффициента полезного действия желательно уменьшить результат на эти доли процентов.

Спектральный состав солнечной радиации

На интервал длин волн между 0,1 и 4 мк приходится 99% всей энергии солнечной радиации. Всего 1% остается на радиацию с меньшими и большими длинами волн, вплоть до рентгеновых лучей и радиоволн.
Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,75 мк. Однако в этом интервале заключается почти половина всей солнечной лучистой энергии (46%). Почти столько же (47%) приходится на инфракрасные лучи, а остальные 7% — на ультрафиолетовые.
В метеорологии принято выделять коротковолновую и длинноволновую радиацию. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мк. Она включает, кроме видимого света, еще ближайшую к нему по длинам волн ультрафиолетовую и инфракрасную радиацию. Солнечная радиация на 99% является такой коротковолновой радиацией. К длинноволновой радиации относят радиацию земной поверхности и атмосферы с длинами волн от 4 до 100-120 мк.
Интенсивность прямой солнечной радиации

Радиацию, приходящую к земной поверхности непосредственно от солнечного диска, называют прямой солнечной радиацией, в отличие от радиации, рассеянной в атмосфере. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже Земной шар в целом так мал в сравнении с расстоянием от Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

Приток прямой солнечной радиации на земную поверхность или на любой вышележащий уровень в атмосфере характеризуется интенсивностью радиации I, т. е. количеством лучистой энергии, поступающим за единицу времени (одну минуту) на единицу площади (один квадратный сантиметр), перпендикулярной к солнечным лучам.

Рис. 1. Приток солнечной радиации на поверхность, перпендикулярную к лучам (АВ), и на горизонтальную поверхность (АС).

Легко понять, что единица площади, расположенной перпендикулярно к солнечным лучам, получит максимально возможное в данных условиях количество радиации. На единицу горизонтальной площади придется меньшее количество лучистой энергии:

I’ = I sinh

где h — высота солнца (рис. 1).

Все виды энергии взаимно эквивалентны. Поэтому лучистую энергию можно выразить в единицах любого вида энергии, например в тепловых или механических. Естественно выражать ее в тепловых единицах, потому что измерительные приборы основаны на тепловом действии радиации: лучистая энергия, почти полностью поглощаемая в приборе, переходит в тепло, которое и измеряется. Таким образом, интенсивность прямой солнечной радиации будет выражаться в калориях на квадратный сантиметр в минуту (кал/см2мин).

Федеральный закон N 52-ФЗ от 30 марта 1999 г. «О санитарно-эпидемиологическом благополучии населения»

Глава III. Статья 12. п. 2. При разработке норм проектирования, схем градостроительного планировочного развития территорий,
генеральных планов городских и сельских поселений, проектов планировки общественных центров, жилых районов, магистралей городов,
решении вопросов размещения объектов гражданского, промышленного и сельскохозяйственного назначения и установления их санитарно-защитных зон,
выборе земельных участков под строительство, а также при проектировании, строительстве, реконструкции, техническом перевооружении, расширении,
консервации и ликвидации промышленных, транспортных объектов, зданий и сооружений культурно-бытового назначения, жилых домов,
объектов инженерной инфраструктуры и благоустройства и иных объектов (далее – объекты) должны соблюдаться санитарные правила.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector