Ядерно магнитный резонанс

Магнитно-резонансная томография (ядерно-магнитная резонансная томография, МРТ, ЯМРТ, NMR, MRI)

Магнитно-резонансная томография (ядерно-магнитная резонансная томография, МРТ, ЯМРТ, NMR, MRI) – нерентгенологический метод исследования внутренних органов и тканей человека. Здесь не используются Х-лучи, что делает данный метод безопасным для большинства людей.
Как проводится исследование

Технология МРТ достаточно сложна: используется эффект резонансного поглощения атомами электро-магнитных волн. Человека помещают в магнитное поле, которое создает аппарат. Молекулы в организме при этом разворачиваются согласно направлению магнитного поля. После этого радиоволной проводят сканирование. Изменение состояния молекул фиксируется на специальной матрице и передается в компьютер, где проводится обработка полученных данных. В отличие от компьютерной томографии МРТ позволяет получить изображение патологического процесса в разных плоскостях.
Магнитно-резонансный томограф по своему внешнему виду похож на компьютерный. Исследование проходит так же, как и компьютерная томография. Стол постепенно продвигается вдоль сканера. МРТ требует больше времени, чем КТ, и обычно занимает не менее 1 часа (диагностика одного раздела позвоночника занимает 20-30 минут).

Метод был назван магнитно-резонансной томографией, а не ядерно-магнитной резонансной томографией (ЯМРТ) из-за негативных ассоциаций со словом «ядерный» в конце 1970-х годов. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул. МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения.

Метод особенно эффективен для изучения динамических процессов (например, состояния кровотока и результатов его нарушения) в органах и тканях.
Преимущества магнитно-резонансной томографии

МРТ лучше визуализирует некоторые структуры головного и спинного мозга, а также другие нервные структуры. В связи с этим она чаще используется для диагностики повреждений, опухолевых образований нервной системы, а также в онкологии, когда необходимо определить наличие и распространенность опухолевого процесса. Список заболеваний, которые можно обнаружить с помощью МРТ, внушителен: воспалительные, дистрофические и опухолевые поражения сосудов и сердца, органов грудной и брюшной полости, поражение лимфатических узлов, паразитарные процессы и другие патологии.
Вредна ли магнитно-резонансная томография?

В настоящее время о вреде магнитного поля ничего не известно. Однако большинство ученых считают, что в условиях, когда нет данных о его полной безопасности, подобным исследованиям не следует подвергать беременных женщин. По этим причинам, а также в связи с высокой стоимостью и малой доступностью оборудования компьютерная и ЯМР томографии назначаются по строгим показаниях в случаях спорного диагноза или безрезультатности других методов исследований. МРТ не может также проводиться у тех людей, в организме которых находятся различные металлические конструкции – искусственные суставы, водители ритма сердца, дефибрилляторы, ортопедические конструкции, удерживающие кости и т.п.

Как и другие методы исследования, компьютерную и магнитно-резонансную томографию назначает только врач. Далеко не во всех медицинских учреждениях проводятся эти исследования, поэтому при необходимости постарайтесь обратиться в диагностический центр.

МРТ – магнитно-резонансная томография – это современный, безопасный (без ионизирующего излучения) и надёжный метод лучевой диагностики. МРТ является уникальным и практически не имеющим аналогов исследованием для диагностики заболеваний центральной нервной системы, позвоночника, мышечно – суставной системы и ряда внутренних органов.

Специальной подготовки к исследованию не требуется, за исключением обследования органов малого таза, когда требуется наполненный мочевой пузырь. Во время исследования пациент в горизонтальном положении помещается в узкий тоннель (трубу) с сильным магнитный полем приблизительно на 15 – 20 минут, в зависимости от вида исследования. Пациент должен сохранять полную неподвижность исследуемой анатомической области. Процедура МРТ безболезненна, однако сопровождается сильным шумом. Для уменьшения дискомфорта вам будут предложены наушники.

Так же возможен психологический дискомфорт из-за нахождения в замкнутом пространстве. Сопровождающие лица могут находиться в помещении МРТ (магнитно-резонансной томографии) с пациентом при условии отсутствия у них противопоказаний к нахождению в магнитном поле и после подписания информационного согласия на каждое лицо, находящегося в области магнитного излучения.

Магнитно-резонансная томография — МРТ — до и после.

Перед проведением МРТ исследования необходимо заполнить анкету, которая позволяет выявить наличие противопоказаний к процедуре. Противопоказаниями к проведению МРТ исследования являются: наличие у пациента кардиостимуляторов (водителей ритма сердца), слуховых аппаратов и имплантов неустановленного происхождения; неадекватное поведение больного (психомоторное возбуждение, паническая атака), состояние алкогольного или наркотического опьянения, клаустрофобия (боязнь и выраженный дискомфорт при нахождении в замкнутых пространствах), невозможность сохранять неподвижность в течение всего исследования (например, вследствие сильной боли или неадекватного поведения), необходимость постоянного мониторинга жизненно-важных показателей (ЭКГ, артериальное давление, частота дыхания) и проведения постоянных реанимационных мероприятий (например, искусственного дыхания).

При наличии в анамнезе хирургических операций и инородных тел (имплантов) необходим сертификат на вживлённый материал или справка от лечащего врача, выполнявшего оперативное вмешательство (вживление) о безопасности проведения МРТ исследования с данным материалом. Информация для пациентов женского пола: менструация, наличие внутриматочной спирали, а так же кормление грудью не являются противопоказаниями для исследования. Беременность рассматривается как относительное противопоказание, в связи, с чем требуется заключение врача-гинеколога о возможности проведения МРТ исследования. Окончательное решение об отказе пациенту от проведения МРТ исследования принимает непосредственно перед исследованием дежурный врач-рентгенолог МРТ.

В связи с наличием сильного магнитного поля в помещение МРТ запрещается провоз каталок для лежачих пациентов, кресел-каталок, вспомогательных устройств, для передвижения (костыли, трости, рамки), содержащих металлические компоненты. Личные вещи, украшения и ценности, одежда, содержащая металл и электромагнитные устройства не допускаются в комнату МРТ сканирования и могут быть оставлены в сейфе в помещении управления МРТ.
Магнитно-резонансная томография безвредна!

Пациенту необходимо знать, что магнито-резонансная томография, как исследование, обладает определёнными диагностическими пределами, а так же возможной ограниченной чувствительностью и специфичностью в диагностике патологических процессов. В связи с этим, а так же при наличии сомнений в целесообразности проведения исследования рекомендуется проконсультироваться с лечащим врачом или врачом МРТ. Решение о проведении МРТ исследования и выборе анатомической области исследования принимает сам пациент на основании направления от лечащего врача или по собственной инициативе. Перед проведением МРТ исследования пациент самостоятельно указывает анатомическую область исследования в письменной форме, тем самым, подтверждая необходимость исследования данной области. После проведения МРТ исследования претензии не принимаются, и оплата за МРТ исследование не возвращается.

В ряде случаев возникает диагностическая необходимость проведения МРТ исследования с внутривенным контрастным усилением. Данные исследования проводятся только по направлению лечащего врача или врача МРТ. Введение контрастного препарата содержит минимальный риск побочных реакций. Пациенту будет предложено заполнить дополнительную анкету – лист информационного согласия на внутривенное введение контрастного препарата. Противопоказаниями к проведению внутреннего контрастного усиления является беременность, кормление грудью, ранее выявленная повышенная чувствительность к препаратам данной группы, а так же почечная недостаточность.

Для повышения диагностической эффективности МРТ исследований пациентам рекомендуется приносить с собой данные предыдущих МРТ исследований, других методов лучевой, лабораторной или функциональной диагностики, а так же амбулаторные карты или направления от лечащих врачей с указанием области и цели исследования.
Наш центр оснащен магнитно-резонансным томографом Magnetom Harmony компании Siemens

В нашем центре проводятся МРТ исследования головного мозга (головы), позвоночника, суставов и всего тела. В нашей клинике установлен Магнитно-резонансный томограф на основе использования сверхпроводящего магнита с напряженностью поля 1.0 Тл.

Кроткий дизайн магнита (всего 160 см, включая кожух) и передне-фронтальный доступ к пациенту для обеспечения комфорта пациента, значительно снижая проблему клаустрофобии.

Набор высокопроизводительных градиентов (20 мТл/м со скоростью нарастания 50 Тл/м/сек, 30 мТл/м при 75 Тл/м/сек и 30 мТл/м при 125 Тл/м/сек по каждой из x, y, z осей), циркулярно-поляризованная технология мультиэлементных радиочастотных катушек, объединенных в единый виртуальный массив для их панорамного использования, и новейшие уникальные импульсные последовательности в их клинически ориентированной вариации (TrueFisp, VIBE, HASTE, EPI, PSIF-Diffusion и пр.) для проведения всевозможных рутинных и скоростных обследований как на задержке дыхания, так и без нее (нейро: голова и отделы позвоночника, ортопедия, абдоминальные, ангиографические и кардиологические обследования), но и протонную спектроскопию, функциональные исследования головного мозга и пр.

Сканер с технологией Maestro Class, позволяющей обеспечить интеллектуальность и экспертность МРТ (магнитно-резонансная томография) обследований (Inline обработка и коррекци я смещений в процессе сбора данных 1D, 2D, 3D PACE) и увеличить дополнительно скорость сбора данных с использованием iPAT технологии до 2-3-х раз. Как следствие, Maestro Сlass расширяет возможности существующих приложений и открывает новые.

Возможность получения срезов толщиной до 0.05 мм при минимальном поле обзора до 7 мм и пространственным разрешением до 7 мкм

Высокопроизводительная компьютерная система, обеспечивающая параллельно сбор данных и реконструкцию до 5-ти потоков данных. При этом сама реконструкция выполняется со скоростью 100 изображений/сек при истинной матрице 256х256.

Сегодня все чаще пациентов направляют не на рентгенографию или УЗИ, а на ядерную магниторезонансную томографию. В основе такого метода исследования лежит магнетизм ядра. Рассмотрим, что такое ямр томография, какие ее преимущества и в каких случаях она проводится.

Что это за исследование?

Этот метод диагностики основан на ядерном магнитном резонансе. Во внешнем магнитном поле ядро атома водорода, или протон, находится в двух взаимно противоположных состояниях. Изменить направление магнитного момента ядра можно, подействовав на него электромагнитными лучами с некоторой определенной частотой.

Помещение протона во внешнее магнитное поле вызывает изменение его магнитного момента с возвращением в исходное положение. При этом выделяется определенное количество энергии. Магнитно резонансный томограф фиксирует изменение количества такой энергии.

Томограф использует очень сильные магнитные поля. Электромагниты обычно способны развивать магнитное поле напряженностью 3, иногда до 9 Тл. Оно является полностью безвредным для человека. Система томографа позволяет локализировать направленность магнитного поля с тем, чтобы получить наиболее качественные изображения.

Ядерно магнитный томограф

Способ диагностики основывается на фиксации электромагнитного отклика ядра атома (протона), происходящего из-за возбуждения его электромагнитными волнами в высоконапряженном магнитном поле. Впервые о магнитно резонансной томографии заговорили еще в 1973 году. Тогда американский ученый П. Латербур предложил провести исследование объекта в изменяющемся магнитном поле. Работы этого ученого послужили началу новой эры в медицине.

С помощью магнитно резонансного томографа стало возможным изучать ткани и полости организма человека благодаря степени насыщенности тканей водородом. Часто применяются магнито-резонансные контрастные вещества. Чаще всего это препараты гадолиния, которые способны изменять отклик протонов.
Термин «ядерная МР томография» существовал до 1986 года.

В связи с радиобоязнью у населения в связи с катастрофой на Чернобыльской атомной электростанции из названия нового метода диагностики решено было убрать слово «ядерный». Впрочем, это позволило магнито-резонансной томографии быстро войти в практику диагностики многих заболеваний. На сегодня этот метод является ключевым в определении множества еще недавно труднодиагностируемых заболеваний.

Как проводится диагностика?

При проведении МРТ используется очень сильное магнитное поле. И хотя оно не опасно для человека, все же врачу и пациенту нужно придерживаться определенных правил.

Прежде всего, перед процедурой диагностики пациент заполняет специальную анкету. В ней он указывает состояние здоровья, а также ведомости о себе. Обследование делается в специально подготовленном помещении с кабинкой для переодевания и личных вещей.

Чтобы не навредить самому себе, а также для обеспечения правильности результатов пациент должен снять с себя все вещи, которые содержат металл, оставить в шкафчике для личных вещей мобильные телефоны, кредитные карточки, часы и проч. Женщинам желательно смыть с кожи декоративную косметику.
Дале пациента помещают внутрь трубы томографа. По указанию врача определяется зона обследования. Каждая зона обследуется в течение десяти – двадцати минут. Все это время пациент должен находиться неподвижно. От этого будет зависеть качество снимков. Врач может зафиксировать положение пациента, если это необходимо.

Во время работы аппарата слышатся равномерные звуки. Это нормально и свидетельствует о том, что исследование проходит правильно. Для получения более точных результатов пациенту может быть введено внутривенно контрастное вещество. В отдельных случаях при введении такого вещества ощущается прилив тепла. Это совершенно нормально.

Приблизительно через полчаса после исследования врач может получить протокол исследования (заключение). Выдается также диск с результатами.

Преимущества ядерной МРТ

К преимуществам такого обследования относят следующее.

  1. Возможность получить высококачественные изображения тканей организма в трех проекциях. Это значительно повышает визуализацию тканей и органов. В таком случае ЯМРТ намного лучше, чем компьютерная томография, рентгенография и ультразвуковая диагностика.
  2. Высококачественные объемные изображения дают возможность получить точный диагноз, что улучшает лечение и повышает вероятность выздоровления.
  3. Так как на МРТ можно получить высококачественное изображение, то такое исследование – лучшее для обнаружения опухолей, нарушений деятельности центральной нервной системы, патологических состояний опорно-двигательного аппарата. Так появляется возможность диагностировать те заболевания, которые еще недавно было сложно или невозможно обнаружить.
  4. Современные аппараты для томографии позволяют получить качественные снимки без изменения положения пациента. А для кодирования информации применяются те же методы, что и в компьютерной томографии. Это облегчает диагностику, так как врач видит трехмерные изображения целых органов. Также врач может получить изображения того или иного органа послойно.
  5. Такое обследование хорошо определяет самые ранние патологические изменения в органах. Таким образом можно обнаружить болезнь на стадии, когда пациент еще не ощущает симптомов.
  6. При проведении такого исследования больной не подвергается ионизирующему излучению. Это существенно расширяет сферы применения МРТ.
  7. Процедура МРТ полностью безболезненна и не доставляет больному никакого дискомфорта.

Показания к МРТ

Показаний к проведению магнитно резонансной томографии много.

  • Нарушения мозгового кровообращения.
  • Подозрения на новообразование мозга, поражение его оболочек.
  • Оценка состояния органов после оперативного вмешательства.
  • Диагностика воспалительных явлений.
  • Судороги, эпилепсии.
  • Черепно-мозговая травма.
  • Оценка состояния сосудов.
  • Оценка состояния костей и суставов.
  • Диагностика мягких тканей организма.
  • Заболевания позвоночника (в том числе остеохондроз, спондилоартроз).
  • Травмы позвоночника.
  • Оценка состояния спинного мозга, в том числе подозрения на злокачественные процессы.
  • Остеопороз.
  • Оценка состояния органов брюшины, а также забрюшинного пространства. МРТ показано при желтухе, хроническом гепатите, холецистите, желчнокаменной болезни, опухолевидном поражении печени, панкреатите, заболеваниях желудка, кишечника, селезенки, почек.
  • Диагностика кист.
  • Диагностика состояния надпочечников.
  • Заболевания органов малого таза.
  • Урологические патологии.
  • Гинекологические заболевания.
  • Болезни органов грудной полости.

Кроме того, показано магнито-резонансное исследование всего организма при подозрении на новообразование. С помощью МРТ можно проводить поиск метастазов, если диагностирована первичная опухоль.

Это далеко не полный перечень показаний для проведения магнито-резонансной томографии. Можно с уверенностью утверждать, что нет такого организма и заболевания, которое не можно было бы обнаружить при помощи такого способа диагностики. Поскольку же возможности медицины растут, то перед врачами открываются практически безграничные возможности диагностики и лечения многих опасных болезней.

Когда противопоказана магнитно-резонансная томография?

Для МРТ существует ряд абсолютных и относительных противопоказаний. К абсолютным противопоказаниям относятся такие.

  1. Наличие установленного кардиостимулятора. Это связано с тем, что колебания магнитного поля способны подстраиваться под ритм сердца и таким образом могут привести к летальному исходу.
  2. Наличие установленных ферромагнитных или электронных имплантатов в среднем ухе.
  3. Большие имплантаты из металла.
  4. Наличие в организме ферромагнитных осколков.
  5. Наличие аппаратов Илизарова.

К относительным противопоказаниям (когда исследование возможно при выполнении определенных условий) относятся:

  • инсулиновые насосы;
  • инсулиновые помпы;
  • стимуляторы ЦНС;
  • имплантаты неферромагнитного типа;
  • кардиопротезы;
  • клипсы кровоостанавливающие;
  • сердечная недостаточность в декомпенсированной стадии;
  • беременность до 12 недель (хотя в настоящее время собрано мало информации касательно влияния магнитного поля на организм);
  • клаустрофобия;
  • неадекватное поведение пациента;
  • тяжелые заболевания;
  • необходимость в постоянном наблюдении;
  • клаустрофобия;
  • татуировки, выполненные с помощью красок, содержащих соли металлов.

При выполнении МРТ с контрастом противопоказаниями является анемия, хроническая декомпенсированная почечная недостаточность, беременность, индивидуальная непереносимость.

Заключение

Значение магнитно-резонансной томографии для диагностики трудно переоценить. Это – совершенный, неизвазивный, безболезненный и безвредный способ обнаружения многих болезней. С внедрением магнитно-резонансной томографии улучшилось и лечение пациентов, так как врач знает точный диагноз и особенности всех процессов, протекающих в организме пациента.

Не нужно бояться проведения МРТ. Пациент не ощущает никаких болевых ощущений во время процедуры. Она ничего не имеет общего с ядерным или рентгеновским излучением. Отказываться от проведения такой процедуры также нельзя.

ЯМР для «чайников», или Десять основных фактов о ядерном магнитном резонансе

Алексей Крушельницкий,
доктор физ.-мат. наук, Университет Мартина Лютера (Халле, Германия)
«Троицкий вариант» №9(128), 07 мая 2013 года

  1. Суть явления

    Прежде всего, надо заметить, что хотя в названии этого явления присутствует слово «ядерный», к ядерной физике ЯМР никакого отношения не имеет и с радиоактивностью никак не связан. Если говорить о строгом описании, то без законов квантовой механики никак не обойтись. Согласно этим законам, энергия взаимодействия магнитного ядра с внешним магнитным полем может принимать только несколько дискретных значений. Если облучать магнитные ядра переменным магнитным полем, частота которого соответствует разнице между этими дискретными энергетическими уровнями, выраженной в частотных единицах, то магнитные ядра начинают переходить с одного уровня на другой, при этом поглощая энергию переменного поля. В этом и состоит явление магнитного резонанса. Это объяснение формально правильное, но не очень наглядное. Есть другое объяснение, без квантовой механики. Магнитное ядро можно представить как электрически заряженный шарик, вращающийся вокруг своей оси (хотя, строго говоря, это не так). Согласно законам электродинамики, вращение заряда приводит к появлению магнитного поля, т. е. магнитного момента ядра, который направлен вдоль оси вращения. Если этот магнитный момент поместить в постоянное внешнее поле, то вектор этого момента начинает прецессировать, т. е. вращаться вокруг направления внешнего поля. Таким же образом прецессирует (вращается) вокруг вертикали ось юлы, если ее раскрутить не строго вертикально, а под некоторым углом. В этом случае роль магнитного поля играет сила гравитации.

    Частота прецессии определяется как свойствами ядра, так и силой магнитного поля: чем сильнее поле, тем выше частота. Затем, если кроме постоянного внешнего магнитного поля на ядро будет воздействовать переменное магнитное поле, то ядро начинает взаимодействовать с этим полем — оно как бы сильнее раскачивает ядро, амплитуда прецессии увеличивается, и ядро поглощает энергию переменного поля. Однако это будет происходить только при условии резонанса, т. е. совпадения частоты прецессии и частоты внешнего переменного поля. Это похоже на классический пример из школьной физики — марширующие по мосту солдаты. Если частота шага совпадает с частотой собственных колебаний моста, то мост раскачивается всё сильнее и сильнее. Экспериментально это явление проявляется в зависимости поглощения переменного поля от его частоты. В момент резонанса поглощение резко возрастает, а простейший спектр магнитного резонанса выглядит вот так:

  2. Фурье-спектроскопия

    Первые ЯМР-спектрометры работали именно так, как описано выше — образец помещался в постоянное магнитное поле, и на него непрерывно подавалось радиочастотное излучение. Затем плавно менялась либо частота переменного поля, либо напряженность постоянного магнитного поля. Поглощение энергии переменного поля регистрировалось радиочастотным мостом, сигнал от которого выводился на самописец или осциллограф. Но этот способ регистрации сигнала уже давно не применяется. В современных ЯМР-спектрометрах спектр записывается с помощью импульсов. Магнитные моменты ядер возбуждаются коротким мощным импульсом, после которого регистрируется сигнал, наводимый в РЧ-катушке свободно прецессирующими магнитными моментами. Этот сигнал постепенно спадает к нулю по мере возвращения магнитных моментов в состояние равновесия (этот процесс называется магнитной релаксацией). Спектр ЯМР получается из этого сигнала с помощью Фурье-преобразования. Это стандартная математическая процедура, позволяющая раскладывать любой сигнал на частотные гармоники и таким образом получать частотный спектр этого сигнала. Этот способ записи спектра позволяет значительно понизить уровень шумов и проводить эксперименты намного быстрее.

    Один возбуждающий импульс для записи спектра — это самый простейший ЯМР-эксперимент. Однако таких импульсов, разной длительности, амплитуды, с разными задержками между ними и т. п., в эксперименте может быть много, в зависимости от того, какие именно манипуляции исследователю надо провести с системой ядерных магнитных моментов. Тем не менее, практически все эти импульсные последовательности оканчиваются одним и тем же — записью сигнала свободной прецессии с последующим Фурье-преобразованием.

  3. Магнитные взаимодействия в веществе

    Сам по себе магнитный резонанс остался бы не более чем занятным физическим явлением, если бы не магнитные взаимодействия ядер друг с другом и с электронной оболочкой молекулы. Эти взаимодействия влияют на параметры резонанса, и с их помощью методом ЯМР можно получать разнообразную информацию о свойствах молекул — их ориентации, пространственной структуре (конформации), межмолекулярных взаимодействиях, химическом обмене, вращательной и трансляционной динамике. Благодаря этому ЯМР превратился в очень мощный инструмент исследования веществ на молекулярном уровне, который широко применяется не только в физике, но главным образом в химии и молекулярной биологии. В качестве примера одного из таких взаимодействий можно привести так называемый химический сдвиг. Суть его в следующем: электронная оболочка молекулы откликается на внешнее магнитное поле и старается его экранировать — частичное экранирование магнитного поля происходит во всех диамагнитных веществах. Это означает, что магнитное поле в молекуле будет отличаться от внешнего магнитного поля на очень небольшую величину, которая и называется химическим сдвигом. Однако свойства электронной оболочки в разных частях молекулы разные, и химический сдвиг тоже разный. Соответственно, условия резонанса для ядер в разных частях молекулы тоже будут отличаться. Это позволяет различать в спектре химически неэквивалентные ядра. Например, если мы возьмем спектр ядер водорода (протонов) чистой воды, то в нем будет только одна линия, поскольку оба протона в молекуле H2O совершенно одинаковы. Но для метилового спирта СН3ОН в спектре будет уже две линии (если пренебречь другими магнитными взаимодействиями), поскольку тут есть два типа протонов — протоны метильной группы СН3 и протон, связанный с атомом кислорода. По мере усложнения молекул число линий будет увеличиваться, и если мы возьмем такую большую и сложную молекулу, как белок, то в этом случае спектр будет выглядеть примерно так:

  4. Магнитные ядра

    ЯМР можно наблюдать на разных ядрах, но надо сказать, что далеко не все ядра имеют магнитный момент. Часто бывает так, что некоторые изотопы имеют магнитный момент, а другие изотопы того же самого ядра — нет. Всего существует более сотни изотопов различных химических элементов, имеющих магнитные ядра, однако в исследованиях обычно используется не более 1520 магнитных ядер, всё остальное — экзотика. Для каждого ядра есть свое характерное соотношение магнитного поля и частоты прецессии, называемое гиромагнитным отношением. Для всех ядер эти отношения известны. По ним можно подобрать частоту, на которой при данном магнитном поле будет наблюдаться сигнал от нужных исследователю ядер.

    Самые важные для ЯМР ядра — это протоны. Их больше всего в природе, и они имеют очень высокую чувствительность. Для химии и биологии очень важны ядра углерода, азота и кислорода, но с ними ученым не очень повезло: наиболее распространенные изотопы углерода и кислорода, 12С и 16О, магнитного момента не имеют, у природного изотопа азота 14N момент есть, но он по ряду причин для экспериментов очень неудобен. Есть изотопы 13С, 15N и 17О, которые подходят для ЯМР-экспериментов, но их природное содержание очень низкое, а чувствительность очень маленькая по сравнению с протонами. Поэтому часто для ЯМР-исследований готовят специальные изотопно-обогащенные образцы, в которых природный изотоп того или иного ядра замещен на тот, который нужен для экспериментов. В большинстве случаев эта процедура весьма непростая и недешевая, но иногда это единственная возможность получить необходимую информацию.

  5. Электронный парамагнитный и квадрупольный резонанс

    Говоря про ЯМР, нельзя не упомянуть о двух других родственных физических явлениях — электронном парамагнитном резонансе (ЭПР) и ядерном квадрупольном резонансе (ЯКР). ЭПР по своей сути подобен ЯМР, разница заключается в том, что резонанс наблюдается на магнитных моментах не атомных ядер, а электронной оболочки атома. ЭПР может наблюдаться только в тех молекулах или химических группах, электронная оболочка которых содержит так называемый неспаренный электрон, тогда оболочка имеет ненулевой магнитный момент. Такие вещества называются парамагнетиками. ЭПР, как и ЯМР, также применяется для исследований различных структурно-динамических свойств веществ на молекулярном уровне, но его область использования существенно уже. Это связано в основном с тем, что большинство молекул, особенно в живой природе, не содержит неспаренных электронов. В некоторых случаях можно использовать так называемый парамагнитный зонд, т. е. химическую группу с неспаренным электроном, которая связывается с исследуемой молекулой. Но такой подход имеет очевидные недостатки, которые ограничивают возможности этого метода. Кроме того, в ЭПР нет такого высокого спектрального разрешения (т. е. возможности отличить в спектре одну линию от другой), как в ЯМР.

    Объяснить «на пальцах» природу ЯКР труднее всего. Некоторые ядра обладают так называемым электрическим квадрупольным моментом. Этот момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Взаимодействие этого момента с градиентом электрического поля, создаваемого кристаллической структурой вещества, приводит к расщеплению энергетических уровней ядра. В этом случае можно наблюдать резонанс на частоте, соответствующей переходам между этими уровнями. В отличие от ЯМР и ЭПР, для ЯКР не нужно внешнего магнитного поля, поскольку расщепление уровней происходит без него. ЯКР также используется для исследования веществ, но область его применения еще уже, чем у ЭПР.

  6. Преимущества и недостатки ЯМР Сверхпроводящий магнит в разрезе

    ЯМР — самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

    Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры — одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудование.

  7. Магниты для ЯМР-спектрометров

    Одна из самых важных и дорогих частей спектрометра — магнит, создающий постоянное магнитное поле. Чем сильнее поле, тем выше чувствительность и спектральное разрешение, поэтому ученые и инженеры постоянно пытаются получить как можно более высокие поля. Магнитное поле создается электрическим током в соленоиде — чем сильнее ток, тем больше поле. Однако бесконечно увеличивать силу тока нельзя, при очень большом токе провод соленоида просто начнет плавиться. Поэтому уже очень давно для высокопольных ЯМР-спектрометров используются сверхпроводящие магниты, т. е. магниты, в которых провод соленоида находится в сверхпроводящем состоянии. В этом случае электрическое сопротивление провода равно нулю, и выделения энергии не происходит при любой величине тока. Сверхпроводящее состояние можно получить только при очень низких температурах, всего нескольких градусов Кельвина, — это температура жидкого гелия. (Высокотемпературная сверхпроводимость — до сих пор удел только чисто фундаментальных исследований.) Именно с поддержанием такой низкой температуры и связаны все технические сложности конструирования и производства магнитов, которые обуславливают их дороговизну. Сверхпроводящий магнит построен по принципу термоса-матрешки. Соленоид находится в центре, в вакуумной камере. Его окружает оболочка, в которой находится жидкий гелий. Эта оболочка через вакуумную прослойку окружена оболочкой из жидкого азота. Температура жидкого азота — минус 196 градусов по Цельсию, азот нужен для того, чтобы гелий испарялся как можно медленнее. Наконец, азотная оболочка изолируется от комнатной температуры внешней вакуумной прослойкой. Такая система способна сохранять нужную температуру сверхпроводящего магнита очень долго, хотя для этого нужно регулярно подливать в магнит жидкие азот и гелий. Преимущество таких магнитов кроме возможности получать высокие магнитные поля также и в том, что они не потребляют энергии: после запуска магнита ток бегает по сверхпроводящим проводам практически без каких-либо потерь в течение многих лет.

  8. Томография Разные варианты ЯМР-томограммы головного мозга

    В обычных ЯМР-спектрометрах магнитное поле стараются сделать как можно более однородным, это нужно для улучшения спектрального разрешения. Но если магнитное поле внутри образца, наоборот, сделать очень неоднородным, это открывает принципиально новые возможности для использования ЯМР. Неоднородность поля создается так называемыми градиентными катушками, которые работают в паре с основным магнитом. В этом случае величина магнитного поля в разных частях образца будет разная, а это значит, что сигнал ЯМР можно наблюдать не от всего образца, как в обычном спектрометре, а только от его узкого слоя, для которого соблюдаются резонансные условия, т. е. нужное соотношение магнитного поля и частоты. Меняя величину магнитного поля (или, что по сути то же самое, частоту наблюдения сигнала), можно менять слой, который будет давать сигнал. Таким образом можно «просканировать» образец по всему объему и «увидеть» его внутреннюю трехмерную структуру, не разрушая образец каким-либо механическим способом. К настоящему времени разработано большое число методик, позволяющих измерять различные параметры ЯМР (спектральные характеристики, времена магнитной релаксации, скорость самодиффузии и некоторые другие) с пространственным разрешением внутри образца. Самое интересное и важное, с практической точки зрения, применение ЯМР-томографии нашлось в медицине. В этом случае исследуемым «образцом» является человеческое тело. ЯМР-томография является одним из самых эффективных и безопасных (но также и дорогих) диагностических средств в различных областях медицины, от онкологии до акушерства. Любопытно заметить, что в названии этого метода медики не употребляют слово «ядерный», потому что некоторые пациенты связывают его с ядерными реакциями и атомной бомбой.

  9. История открытия Е .К. Завойский

    Годом открытия ЯМР считается 1945-й, когда американцы Феликс Блох из Стэнфорда и независимо от него Эдвард Парселл и Роберт Паунд из Гарварда впервые наблюдали сигнал ЯМР на протонах. К тому времени уже было много известно о природе ядерного магнетизма, сам эффект ЯМР был теоретически предсказан, и было сделано несколько попыток его экспериментального наблюдения. Важно отметить, что годом раньше в Советском Союзе, в Казани, Евгением Завойским было открыто явление ЭПР. Сейчас уже хорошо известно, что Завойский также наблюдал и сигнал ЯМР, это было перед войной, в 1941 году. Однако в его распоряжении был магнит низкого качества с плохой однородностью поля, результаты были плохо воспроизводимыми и потому так и остались неопубликованными. Справедливости ради надо заметить, что Завойский был не единственным, кто наблюдал ЯМР до его «официального» открытия. В частности, американский физик Исидор Раби (лауреат Нобелевской премии 1944 года за исследование магнитных свойств ядер в атомных и молекулярных пучках) в конце 30-х годов также наблюдал ЯМР, но счел это аппаратурным артефактом. Так или иначе, но за нашей страной остается приоритет в экспериментальном обнаружении магнитного резонанса. Хотя сам Завойский вскоре после войны стал заниматься другими проблемами, его открытие для развития науки в Казани сыграло огромную роль. Казань до сих пор остается одним из ведущих мировых научных центров по ЭПР-спектроскопии.

  10. Нобелевские премии в области магнитного резонанса

    В первой половине XX века было присуждено несколько Нобелевских премий ученым, без работ которых открытие ЯМР не могло бы состояться. Среди них можно назвать Петера Зеемана, Отто Штерна, Исидора Раби, Вольфганга Паули. Но непосредственно связанных с ЯМР Нобелевских премий было четыре. В 1952 году премию получили Феликс Блох и Эдвард Парселл за открытие ЯМР. Это единственная «ЯМР-ная» Нобелевская премия по физике. В 1991 году премию по химии получил швейцарец Ричард Эрнст, работавший в знаменитой Швейцарской высшей технической школе в Цюрихе. Он был удостоен ее за развитие методов многомерной ЯМР-спектроскопии, которые позволили кардинально увеличить информативность ЯМР-экспериментов. В 2002 году лауреатом премии, также по химии, стал Курт Вютрих, работавший с Эрнстом в соседних зданиях в той же Технической школе. Он получил премию за разработку методов определения трехмерной структуры белков в растворе. До этого единственным методом, позволяющим определять пространственную конформацию больших биомакромолекул, был только рентгеноструктурный анализ. Наконец, в 2003 году премию по медицине за изобретение ЯМР-томографии получили американец Поль Лаутербур и англичанин Петер Мансфилд. Советский первооткрыватель ЭПР Е. К. Завойский Нобелевской премии, увы, не получил.

«Ядерная» диагностика: увидеть невидимое

: 29 Дек 2018 , «Обращаясь к старому, открываешь новое» , том 80, №5/6

Слово «ядерная» в приложении к чему-либо обычного человека всегда настораживает. И диагностическая ядерная медицина в этом смысле не исключение. Автор этой статьи, не медик, но научный сотрудник с физическим образованием, следит за развитием этой активно развивающейся области современного здравоохранения в силу своих научных интересов, связанных с математическим моделированием. Одна из главных целей этой публикации не просто познакомить широкого читателя с самыми передовыми диагностическими технологиями, но и обосновать необходимость создания в России мультидисциплинарного исследовательского центра ядерной медицины, которого в нашей стране пока нет

Ядерная медицина – ​так называют раздел клинической медицины, который использует в диагностике и лечении радиоактивные фармацевтические препараты. Современными методами диагностики в ядерной медицине являются позитронно-эмиссионная томография (ПЭТ) и однофотонная эмиссионная компьютерная томография (ОЭКТ). Сегодня их широко используют в онкологии, кардиологии и нейрологии. В последнее десятилетие особое внимание в мировой клинической практике уделялось методу ПЭТ, который на сегодня признан «золотым стандартом» в диагностике раковых заболеваний.

За последние годы и в России построено более десятка ПЭТ-центров, в первую очередь в Москве и Санкт-Петербурге. Федеральная сеть центров ядерной медицины расширяется, охватывая различные регионы страны: уже построены ПЭТ-центры в Уфе, Хабаровске, Челябинске, Красноярске, Ханты-Мансийске, Казани, Екатеринбурге, Белгороде, Тольятти.

В мае 2018 г. на Петербургском международном экономическом форуме было подписано соглашение о стратегическом партнерстве Новосибирской области и ООО «Лечебно-диагностический центр Международного института биологических систем имени Сергея Березина» по созданию центра ядерной медицины в Новосибирске. Стоимость проекта составит более 1 млрд рублей, а сам центр планируется ввести в эксплуатацию в ближайшие годы.

В связи с этим возникает ряд вопросов, которые интересны не только специалистам, но и широкой общественности. Например, какую информацию несут изображения, полученные с помощью диагностических методов ядерной медицины? В чем состоит их преимущество при онкологических заболеваниях? Какова лучевая нагрузка на пациента при обследованиях методами ПЭТ и ОЭКТ? Сколько стоит такое обследование, и кто будет за него платить?

От морфологии – ​к физиологии

К стандартным и широко известным методам диагностики сегодня можно отнести рентгеновскую компьютерную томографию (КТ) и магнитно-резонансную томографию (МРТ), каждый из этих методов имеет свою нишу приложения.

С помощью КТ регистрируют степень поглощения рентгеновского излучения биологическими тканями, которая зависит от плотности среды. Эти изображения имеют высокую контрастность в случае соседства сред с существенно различающейся плотностью, например, «мягкие ткани–кости», из-за чего КТ наиболее широко используется для диагностики травм и болезней костей и оценки состояния легких. А с использованием контрастных веществ КТ применяют и для исследования кровеносных сосудов, в том числе для выявления инсульта.

Метод МРТ основан на явлении ядерного магнитного резонанса. С его помощью получают изображение пространственного распределения протонов (ядер атомов водорода, входящих в состав молекулы H2O), которое наиболее контрастно для мягких тканей с различным содержанием воды. МРТ используют для исследования головного и спинного мозга, диагностики опухолей, заболеваний нервной системы.

И КТ, и МРТ позволяют получать высококачественные «анатомические изображения» с высокой (менее 1 мм) степенью разрешения. Однако при онкологических заболеваниях необходимо различать нормальные и аномальные структуры в пределах одного и того же органа, и в таких случаях этим методам часто недостает чувствительности, особенно на ранних стадиях болезни.

ВЗВЕШЕННЫЙ РИСК С ростом числа «лучевых» медицинских процедур в научной литературе начал активно обсуждаться вопрос о допустимых дозах поглощенного излучения. Лучевую нагрузку на пациента оказывают все современные томографические методы, кроме МРТ. И сегодня врачи при направлении больных на подобные обследования руководствуются двумя принципами: обоснование и оптимизация, – ​соотнося риски с возможностью получения жизненно важной информации. Проблема лучевого риска особенно значима в педиатрии, а также для пациентов детородного возраста. С увеличением возраста пациентов вероятность неблагоприятных последствий быстро снижается.
Напомним, что на всех нас действует природный радиационный фон, создаваемый космическим излучением и излучением природных радионуклидов, в основном радоном. В мире средняя доза облучения за счет изотопов радона в помещениях составляет около 1,3 мЗв/год, в России – ​около 2,4 мЗв/год. Доза облучения при КТ составляет от 1 до 10 мЗв в зависимости от вида обследованных органов, а при КТ-ангиографии – ​15 мЗв. Лучевая нагрузка при радионуклидных методах примерно сопоставима: 6 мЗв при исследовании перфузии миокарда методом ОЭКТ с использованием препарата Тс99m-МИБИ, 3,7—13,9 мЗв при ПЭТ всего тела с использованием препарата ФДГ. При этом по ценности получаемой информации эти методы несравнимы ни с какими другими

Усилить чувствительность методов КТ и МРТ можно с помощью контрастных веществ. Большинство опухолей, особенно злокачественных, имеют лучшее кровоснабжение, чем здоровые ткани, и контрастное вещество будет накапливаться в них в большей концентрации. Однако эти отличия не всегда настолько значимы, чтобы на основе визуальных оценок можно было поставить диагноз.

Оба этих метода дают изображения, основанные преимущественно на морфологических различиях тканей. Принципиальное отличие диагностических методов ядерной медицины состоит в том, что они позволяют визуализировать метаболические процессы (химические реакции, необходимые для поддержания жизни), протекающие в организме на клеточном уровне.

Метим опухоль

Диагностические методы ядерной медицины, и ПЭТ и ОЭКТ, используют радиофармпрепараты, состоящие из рабочего вещества с присоединенной к нему радиоактивной «меткой». Рабочее вещество – ​это специально подобранное молекулярное соединение, которое участвует в естественных метаболических процессах в организме человека.

Например, в кардиологии для оценки кровоснабжения миокарда методом ОЭКТ широко применяется препарат Тс99m-МИБИ на основе метокси-изобутил-­изонитрила, который захватывается здоровыми клетками миокарда. Метка накапливается в областях с ненарушенным кровоснабжением, и только в неповрежденных клетках, что позволяет диагностировать патологии кровоснабжения миокарда и выявлять области некротического повреждения.

В онкологии метод ОЭКТ в последние годы уступает свои позиции ПЭТ. В этой области медицины практически все ПЭТ-обследования проводят с помощью препарата фтордезоксиглюкоза, по составу близкому к обыкновенной глюкозе и меченному изотопом фтора 18F. Глюкоза – ​универсальный источник энергии, поэтому раковые клетки, отличающиеся усиленным метаболизмом, накапливают этот препарат в более высоких концентрациях, чем здоровые. И на ПЭТ-изображениях очаги поражения видны в виде ярких пятен.

В ОЭКТ и ПЭТ используются разные радионуклиды-­метки. В первом случае это радиоактивные вещества, которые при распаде испускают гамма-кванты. Радионуклиды, использующиеся при ПЭТ-диагностике, испускают позитроны – ​античастицы электронов. В биологических тканях присутствует много свободных электронов, поэтому позитрон встречается с электроном, пройдя расстояние менее 1—2 мм. Частицы аннигилируют, выделяя энергию в виде двух гамма-квантов, вылетающих в противоположных направлениях, которые и регистрируются детекторами. Поток гамма-квантов при ПЭТ существенно выше, что и обеспечивает более высокое качество получаемых изображений.

В 2012 г. в широко известном медицинском журнале The New England Journal of Medicine вышла статья «Бремя болезней и меняющиеся задачи медицины», где была приведена таблица причин смертности населения г. Бостон за период с 1812 по 2012 гг. В начале XIX в. довольно частой была «смерть от разрыва пушечного ядра», столетие спустя основными причинами смерти были пневмония, грипп, туберкулез и желудочно-кишечные инфекции. В 2010 г. доминирующими причинами смерти стали сердечно-сосудистые заболевания и рак. Примерно такая же динамика наблюдается во всем мире и в России. Ученые предсказывают, что в ближайшие годы онкологические заболевания выйдут в абсолютные лидеры благодаря достигнутому прогрессу в диагностике и лечении сердечно-сосудистых заболеваний и выявлении основных причин этих патологий.
Сейчас Минздрав России работает над новой национальной онкологической программой, рассчитанной до 2030 г. Ожидается, что большая роль в этой программе будет отведена развитию современных методов диагностической и терапевтической ядерной медицины, созданию ПЭТ-центров на территории России

В чем преимущества метода ПЭТ в сравнении с другими видами томографии для диагностики рака? Во-первых, он позволяет не только дифференцировать доброкачественные и злокачественные образования, но и обнаруживать опухоль на самой ранней стадии развития, когда шансов на успех излечивания существенно больше. Во-вторых, это единственный метод, с помощью которого можно просканировать все тело после обнаружения первичной опухоли, чтобы диагностировать наличие или отсутствие метастазов, что чрезвычайно важно для определения тактики лечения. Наконец, только ПЭТ дает самую раннюю оценку эффективности проводимого лечения, а также позволяет отличить рецидив от морфологических повреждений ткани после хирургических и лучевых процедур.

ПЭТ-исследования используют и для контроля опухолевого процесса уже после курса терапии. Например, при изначально гормонопозитивном раке молочной железы опухоль иногда прогрессирует после окончания стандартной 5-летней гормонотерапии. Но в рутинной клинической практике онкологи часто пренебрегают возможностью повторного установления диагноза, особенно при внутригрудной и внутрибрюшинной локализации метастазов. Это непросто сделать даже с помощью ПЭТ-диагностики из-за низкой метаболической активности очагов вследствие небольших размеров. Однако эти ограничения можно преодолеть за счет использования нового препарата – 18F-фторэтилтирозина, который еще только входит в практику передовых клиник.

Нужно отметить, что «молекулярные изображения», полученные с помощью диагностических методов ядерной медицины, не обладают той высокой четкостью, которая присуща анатомическим изображениям КТ и МРТ. В самом начале своего развития этот раздел получил даже шутливое название unclear medicine вместо nuclear medicine. Чтобы привязать очаги поражения к анатомическому строению, в современной диагностической ядерной медицине используют гибридные ПЭТ/КТ- и ПЭТ/МРТ-системы, при которых изображения, полученные разными методами, накладываются друг на друга.

Решают кадры

«Проблема России не в томографах, проблема России – ​в мозгах, в катастрофическом недостатке специалистов и исследований в этой области». Эта цитата из приветственного доклада хирурга-онколога академика М. И. Давыдова на конференции по медицинской физике в 2010 г. остается актуальной и доныне.

В Европе, США, Японии и Китае быстрое развитие ядерной медицины в последние годы привело к росту числа исследований в этой области, увеличению численности и повышению уровня подготовки специалистов. Текущую ситуацию в России можно оценить как критическую. Чтобы решить проблему подготовки кадров для рутинной и исследовательской работы в области ядерной медицины, нужно вводить соответствующие курсы на действующих кафедрах медицинских вузов, а также готовить немедицинских специалистов: радиохимиков, медицинских физиков, математиков, биологов.

Назрела необходимость быстро решать вопрос образовательной подготовки специалистов для ядерной медицины, так как было бы стратегической ошибкой закупать дорогостоящее высокотехнологичное оборудование и при этом не иметь грамотных специалистов, которые могут на нем работать.

С учетом все возрастающей сложности медицинских технологий визуализации задача интерпретации полученных изображений становится все более трудной для врачей. К решению этой проблемы сегодня подключаются исследователи в области «больших данных» и искусственного интеллекта, специалисты в области решения обратных некорректных задач, создатели новых радиофармацевтических препаратов. Такой подход требует создания сильных исследовательских групп, объединяющих врачей, инженеров, физиков, химиков, биологов, математиков.

Будущее ядерной медицины определяется, прежде всего, мультидисциплинарными фундаментальными исследованиями, направленными на разработку более эффективных радиофармпрепаратов, обеспечение радиационной безопасности и создание новых аппаратных средств регистрации гамма-излучения, а также на совершенствование математических методов обработки полученной информации. Кстати сказать, в мире фундаментальные исследования в этой области ведутся сегодня настолько интенсивно и широко, что основной Европейский журнал по ядерной медицине и молекулярной визуализации (EJNMMI) даже разделился на несколько дисциплинарных журналов.

Ниже мы коснемся только одного из направлений, близкого автору по роду его научной деятельности, которое связано с применением математического моделирования и компьютерных имитаций в области диагностической ядерной медицины. Необходимость такого подхода диктуется невозможностью из-за лучевой нагрузки проводить исследования на людях, тогда как эксперименты на мелких животных не могут решить проблем, возникающих при диагностике человека.

Матмоделирование в помощь

Томографические исследования в новосибирском Институте теоретической и прикладной механики (ИТПМ) СО РАН были инициированы д. ф.–м. н. Н. Г. Преображенским еще в 1980-е гг. с целью использовать их для диагностики газа и плазмы. В начале 2000-х гг. специалисты института совместно с врачами НМИЦ им. академика Е. Н. Мешалкина (Новосибирск) начали применять математическое моделирование для компьютерной имитации процедуры обследования кардиологических больных методом ОЭКТ. Сейчас эти исследования продолжаются в сотрудничестве с Институтом вычислительной математики и математической геофизики СО РАН, а также Национальным медицинским исследовательским центром кардиологии (Москва), Венским медицинским университетом и отделением ядерной медицины Центральной клинической больницы Вены (Австрия) при поддержке РФФИ и Австрийского научного фонда.

Математическое моделирование процедуры ОЭКТ и ПЭТ – ​это сложная физико-математическая проблема, состоящая из ряда задач: создания математических моделей (фантомов), описывающих распределение радиофармпрепарата в органах пациента; моделирования процесса формирования «сырых» проекционных данных, регистрируемых детекторами; разработки метода решения обратной задачи реконструкции изображений из «сырых» данных. Фактически при компьютерном моделировании математический фантом служит виртуальным «пациентом», а реальная томографическая установка заменяется виртуальной системой.

Эти исследования позволяют выявить причины возникновения на изображениях «ложных дефектов», приводящих к неправильному диагнозу, а также оценить предельные размеры патологических очагов, которые можно визуализировать в зависимости от их локализации и индивидуальных особенностей анатомического строения пациента. С помощью этого подхода можно также тестировать новые алгоритмы реконструкции изображений и выполнять исследования по оптимизации протокола сбора данных.

При онкологических заболеваниях пациентам часто необходимо неоднократно проводить ПЭТ-сканирование, чтобы выявить метастазы, оценить эффективность терапии и контролировать возможный рецидив опухолевого процесса. Цена зависит от вида используемого препарата и органов тела, которые будут обследованы. «Мировая» стоимость одного обследования всего тела составляет около 1 тыс. долларов. Попасть на такую диагностику можно по направлению из онкодиспансера. В этом случае для жителей регионов, где уже имеются центры федеральной сети, обследование будет проведено за счет ОМС. Судя по сообщениям в СМИ, половина обследований в будущем Центре ядерной медицины в Новосибирске будет покрываться за счет ОМС

В России подобная работа пока ведется только в ИТПМ СО РАН. Несколько лет тому назад совместно с отделением томографии НМИЦ им. ак. Е. Н. Мешалкина был разработан первый отечественный 3D-математический фантом для исследований в области диагностической ядерной кардиологии. Этот фантом описывает распределение препарата Тс99m-МИБИ в органах грудной клетки среднестатистического пациента мужского пола при исследовании перфузии (кровоснабжения) миокарда методом ОЭКТ. Рассчитанные для него проекционные данные хорошо согласуются с данными реальных клинических обследований. Фантом использовался в различных исследованиях, в том числе по снижению дозы радиофармпрепарата с целью уменьшения лучевой нагрузки на пациента.

Существует два подхода к развитию фантомов: на основе методов компьютерной графики и на основе простых фигур, описываемых уравнениями пространственной геометрии. С самого начала мы хотели построить фантомы, которые можно было бы легко трансформировать, меняя размеры и положение органов, чтобы исследовать влияние анатомического строения пациентов на качество изображений.

Например, в течение более 20 лет оставалась непонятой причина появления «ложных дефектов» на изображениях в верхушечной зоне миокарда при исследовании его перфузии. Эти артефакты имитируют или маскируют поражения миокарда, что затрудняет интерпретацию изображений и вынуждает назначать дополнительные дорогостоящие обследования. По результатам исследований на основе численных методов с использованием нашего фантома были предложены рекомендации по внесению изменений в протокол обследований пациентов.

Сегодня в процессе создания находится фантом для компьютерной имитации процедуры обследования «всего тела» методом ПЭТ.

Ядерная медицина с самого начала создавалась исследовательскими коллективами, где «плечо к плечу» работали врачи, физики, химики, математики и биологи, и сегодня она продолжает активно развиваться как мультидисциплинарное направление.

У Новосибирска имеется огромный научный потенциал в области диагностической, терапевтической и интервенционной ядерной медицины: перспективные разработки и хорошие заделы по разным направлениям наряду с большим опытом сотрудничества есть и в институтах СО РАН, и в медицинских учреждениях. Достаточно упомянуть лишь о методе бор-нейтронозахватной терапии рака, который успешно развивается в Институте ядерной физики СО РАН совместно с другими научными и медицинскими организациями. Создание в Новосибирске мультидисциплинарного исследовательского центра ядерной медицины даст крепкую основу для развития фундаментальных и прикладных исследований в этой области.

Литература

Беляев В. Н., Климанов В. А. Физика ядерной медицины. М.: НИЯУ МИФИ, 2012, Ч. 2, 248 с.

Климанов В. А. Физика ядерной медицины. М.: НИЯУ МИФИ, 2012, Ч. 1, 308 с.

Колядина И. В., Абдуллаев А. Г., Танишина Н. Б. и др. Мультимодальный подход к дифференциальной диагностике метастатического поражения при раке молочной железы: описание клинического случая // Злокачественные опухоли. 2017. Т. 7. № 3. С. 31—36.

Ядерная томография

Размещено на http://www.allbest.ru/

Введение

1. Выяснить, что такое ядерные томографы, иметь наглядное представление о них.

2. Изучить внутреннее строение и принципы устройства ядерных томографов, их механизмов

3.Выяснить, безопасно ли применять ядерные томографы и какое воздействие они оказывают на человека, связано ли это с психикой

4. Познакомится с применением радиационных технологий.

5. Выяснить, актуальны ли ядерные томографы в наши дни, насколько обширна их область применения, как часто люди прибегают к их использованию.

1. Определение ядерных томографов

томография резонанс радиационный технология

Ядерные томографы — это приборы, предназначенные для комплексного, внутреннего обследования человека, с помощью полнейшего, безопасного его облучения. Как правило ядерные томографы представляют из себя МРТ приборы.

История МРТ

Годом основания магнитно-резонансной томографии принято считать 1973 год, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса».

Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения.

В СССР способ и устройство для ЯМР-томографии предложил в 1984 году В. А. Иванов. Некоторое время существовал термин ЯМР-томография, который был заменён на МРТ в 1986 году

Что представляет из себя Магнитно резонансная томография?

Магнитно-резонансная томография (МРТ, MRT, MR) — томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса.

Что такое МРТ?

МРТ — магнитно-резонансная томография — это современный, безопасный (без ионизирующего излучения) и надёжный метод лучевой диагностики. МРТ является уникальным и практически не имеющим аналогов исследованием для диагностики заболеваний центральной нервной системы, позвоночника, мышечно-суставной системы и ряда внутренних органов.

2. Принцип МРТ

1) Основой метода является изменение поведения атомов водорода при воздействии на них особым видом электромагнитных колебаний.

2) Метод МРТ позволяет очень четко «увидеть» спинной мозг, головной мозг и внутренние органы. Благодаря ему, врачи без болезненных процедур могут определить скорость движения крови или спинномозгового ликвора, степень диффузии, заметить реакцию коры головного мозга при усилении работы того или иного органа (метод называется функциональной МРТ).

3) Технология МРТ достаточно сложна: используется эффект резонансного поглощения атомами электромагнитных волн. Человека помещают в магнитное поле, которое создает аппарат. Молекулы в организме при этом разворачиваются согласно направлению магнитного поля.

После этого радиоволной проводят сканирование. Изменение состояния молекул фиксируется на специальной матрице и передается в компьютер, где проводится обработка полученных данных. В отличие от компьютерной томографии МРТ позволяет получить изображение патологического процесса в разных плоскостях.

3. Устройство ядерных томографов и их механизмов

Физический смысл ядерно-магнитного резонанса и МРТ (Структура процесса)

1) В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля.

2) В основе МРТ лежит феномен ядерно-магнитного резонанса, открытый в 1946г. физиками Ф. Блохом и Э. Перселлом (Нобелевская премия по физике, 1952г.). Суть этого феномена состоит в способности ядер некоторых элементов, находящихся под воздействием статического магнитного поля, принимать энергию радиочастотного импульса.

Теоретически любые атомы, содержащие нечетное число протонов и/или нейтронов, обладают магнитными свойствами. Находясь в магнитном поле, они ориентируются вдоль его линий. В случае приложения внешнего переменного электромагнитного поля, атомы фактически являющиеся диполями, выстраиваются по новым линиям электромагнитного поля. При перестройки вдоль новых силовых линий ядра генерируют электромагнитный сигнал, который можно зарегистрировать приемной катушкой. В фазу исчезновения магнитного поля, ядра-диполи возвращаются в первоначальное положение, при этом скорость возвращения в первоначальное положение определяется двумя временными константами, Т1 и Т2: *Т1 — это продольное (спин-решетковое) время, отражающее скорость потери энергии возбужденными ядрами *Т2 — это поперечное релаксационное время, зависящее от скорости, с которой возбужденные ядра обмениваются энергией друг с другом Получаемый от тканей сигнал зависит от числа протонов (протоновой плотности) и значений Т1 и Т2. Применяемые при МРТ пульсовые последовательности предназначены для лучшего использования различий тканей по Т1 и Т2 с целью создания максимального контраста между тканями в норме и патологии.

4. Составные части МРТ прибора

Устройство аппарата для томографии включает в себя:

Главный магнит,

Магнитные градиенты,

Передатчик импульсов,

Приемник импульсов,

Устройство для приема и анализа данных,

Оборудование для охлаждения и энергоснабжения.

5. Обследование

Что показывает?

Томограф может очень четко показать вид головного мозга, спинного мозга, суставов, внутренних органов (кроме полых), органов малого таза. С помощью этого вида диагностики обнаруживаются опухоли, спинномозговые грыжи, нарушение строения или патологические процессы во внутренних органах. Томограф показывает орган в виде срезов. Таким образом, результат обследования — это большой лист, испещренный маленькими фотографиями каждого среза интересующего органа. Можно задать ширину среза — например, каждые два сантиметра. Очень хорошо различаются и ткани. То есть врач сразу поймет, с чем имеет дело: жировой прослойкой, осколком кости или полостью, заполненной жидкостью.

Включает в себя:

1) Обследование мозга

Используется для определения различных заболеваний. От других видов исследования отличается тем, что для МРТ не являются препятствием кости черепа, поэтому получается четкое послойное изображение тканей.

2) Обследование позвоночника

Из всех существующих методов обследования позвоночного столба этот наиболее современный и совершенный. В ходе обследуются все отделы позвоночника по очереди. Врач видит костные образования, сосуды, мягкие волокна, окружающие позвоночный столб, а также нервные окончания. Это дает возможность точно определить, что происходит в органе. За одно обследование можно получить полную информацию о состоянии межпозвоночных дисков, позвонков, корешков спинного мозга, оболочек и близлежащей мускулатуры

Кроме того обследование сердца и сосудов, костей и суставов, молочных желез

6. Виды F томографии

Анатомическая томография, разрушающая томография, биотомия — основана на физическом выполнении срезов исследуемого организма с их последующей фиксацией с помощью химических веществ, с дальнейшей регистрацией их на фотоплёнку. Классическими примерами анатомической томографии являются пироговские срезы и изображения гистологических препаратов. Для сохранения формы организма при выполнении срезов организм фиксируется, например, путём замораживания. Реконструктивная томография, неразрушающая томография — получение тем или иным способом информации о распределении интересующего параметра в объекте большей размерности по его проекциям меньшей размерности без разрушения объекта; антоним анатомической томографии. В объём понятия входят вычислительная и аналоговая реконструктивная томографии. Аналоговая реконструктивная томография — реконструктивная томография, использующая для восстановления распределения параметра объекта не цифровые, а аналоговые вычислительные устройства (например, оптические).

7. Методы использования ядерных томографов

1) МР-диффузия

МР-диффузия — метод, позволяющий определять движение внутриклеточных молекул воды в тканях.

Диффузионно-взвешенная томография

Диффузионно-взвешенная томография — методика магнитно-резонансной томографии, основанная на регистрации скорости перемещения меченных радиоимпульсами протонов.

Это позволяет характеризовать сохранность мембран клеток и состояние межклеточных пространств.

Первоначально и наиболее эффективное применение при диагностике острого нарушения мозгового кровообращения, по ишемическому типу, в острейшей и острой стадиях.

Сейчас активно используется в диагностике онкологических заболеваний.

2) МР-перфузия

Метод позволяющий оценить прохождение крови через ткани организма.

В частности существуют специальные характеристики, указывающие на скоростной и объемный приток крови, проницаемость стенок сосудов, активность венозного оттока, а также другие параметры, которые позволяют дифференцировать здоровые и патологически измененные ткани:

Прохождение крови через ткани мозга

Прохождение крови через ткани печени

Метод позволяет определить степень ишемии головного мозга и других органов.

3) МР-спектроскопия

Магнитно-резонансная спектроскопия (МРС) — метод позволяющий определить биохимические изменения тканей при различных заболеваниях по концентрации определенных метаболитов.

МР — спектры отражают относительное содержание биологически активных веществ в определенном участке ткани, что характеризует процессы метаболизма.

Нарушения метаболизма возникают как правило до клинических проявлений заболевания, поэтому на основе данных МР спектроскопии — можно диагностировать заболевания на более ранних этапах развития.

Виды МР спектроскопии

МР спектроскопия внутренних органов

МР спектроскопия биологических жидкостей

Заключение

В наше время магнитно-резонансная томография является одним из самых информативных методов исследования и диагностики заболеваний центральной нервной системы, костно-мышечной и суставной систем человека и т.д.

Магнитно-резонансная томография — метод исследования, позволяющий получить подробнейшую картину состояния органов человека без внутреннего вмешательства, в следствии большинство людей выбирают этот способ обследования. Так как принцип работы аппарата основан на магнитных полях, то процесс исследования абсолютно безопасен с точки зрения ионизирующего облучения — оно отсутствует.

Безусловно, качественное оборудование это важный элемент успешной диагностики, но самым главным звеном всегда будет врач, работающий на этом оборудовании и проводящий исследование.

Список литературы

1. Кафедра общей физики, ОНЦ » Медицинская физика» Аганов А.В